Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 82(2): 392-402, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17505024

RESUMO

Adenosine released by cells in injurious or hypoxic environments has tissue-protecting and anti-inflammatory effects, which are also a result of modulation of macrophage functions, such as vascular endothelial growth factor (VEGF) production. As VEGF is a well-known target of hypoxia-inducible factor 1 (HIF-1), we hypothesized that adenosine may activate HIF-1 directly. Our studies using subtype-specific adenosine receptor agonists and antagonists showed that by activating the A(2A) receptor, adenosine treatment induced HIF-1 DNA-binding activity, nuclear accumulation, and transactivation capacity in J774A.1 mouse macrophages. Increased HIF-1 levels were also found in adenosine-treated mouse peritoneal macrophages. The HIF-1 activation induced by the A(2A) receptor-specific agonist CGS21680 required the PI-3K and protein kinase C pathways but was not mediated by changes in iron levels. Investigation of the molecular basis of HIF-1 activation revealed the involvement of transcriptional and to a larger extent, translational mechanisms. HIF-1 induction triggered the expression of HIF-1 target genes involved in cell survival (aldolase, phosphoglycerate kinase) and VEGF but did not induce inflammation-related genes regulated by HIF-1, such as TNF-alpha or CXCR4. Our results show that the formation of adenosine and induction of HIF-1, two events which occur in response to hypoxia, are linked directly and suggest that HIF-1 activation through A(2A) receptors may contribute to the anti-inflammatory and tissue-protecting activity of adenosine.


Assuntos
Fator 1 Induzível por Hipóxia/metabolismo , Macrófagos Peritoneais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Linhagem Celular , Feminino , Camundongos , Camundongos Endogâmicos , Organismos Livres de Patógenos Específicos
2.
Gastroenterology ; 127(3): 914-23, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15362046

RESUMO

BACKGROUND & AIMS: Ischemic preconditioning has been proved effective in reducing ischemia/reperfusion injury during liver surgery. However, the mechanisms involved are still poorly understood. Here, we have investigated the role of phosphatidylinositol 3-kinase (PI3K) in the signal pathway leading to hepatic preconditioning. METHODS: PI3K activation was evaluated in isolated rat hepatocytes preconditioned by 10-minute hypoxia followed by 10-minute reoxygenation. RESULTS: Hypoxic preconditioning stimulated phosphatidylinositol-3,4,5-triphosphate production and the phosphorylation of PKB/Akt, a downstream target of PI3K. Conversely, PI3K inhibition by wortmannin or LY294002 abolished hepatocyte tolerance against hypoxic damage induced by preconditioning. PI3K activation in preconditioned hepatocytes required the stimulation of adenosine A 2A receptors and was mimicked by adenosine A 2A receptors agonist CGS21680. In the cells treated with CGS21680, PI3K activation was prevented either by inhibiting adenylate cyclase and PKA with, respectively, 2,5-dideoxyadenosine and H89 or by blocking Galphai-protein and Src tyrosine kinase with, respectively, pertussis toxin and PP2. H89 also abolished the phosphorylation of adenosine A 2A receptors. However, the direct PKA activation by forskolin failed to stimulate PI3K. This suggested that PKA-phosphorylated adenosine A 2A receptors may activate PI3K by coupling it with Galphai-protein through Src. We also observed that, by impairing PI3K-mediated activation of phospholypase Cgamma (PLCgamma), wortmannin and LY294002 blocked the downstream transduction of preconditioning signals via protein kinase C (PKC) delta/ isozymes. CONCLUSIONS: PI3K is activated following hepatocyte hypoxic preconditioning by the combined stimulation of adenosine A 2A receptors, PKA, Galphai protein, and Src. By regulating PKC-/delta-dependent signals, PI3K can play a key role in the development of hepatic tolerance to hypoxia/reperfusion.


Assuntos
Hepatócitos/metabolismo , Precondicionamento Isquêmico/métodos , Fosfatidilinositol 3-Quinases/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Masculino , Modelos Animais , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Ratos Wistar , Receptor A2A de Adenosina/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/metabolismo , Quinases da Família src/metabolismo
3.
Free Radic Biol Med ; 34(8): 1047-55, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12684089

RESUMO

Nitric oxide (NO) improves liver resistance to hypoxia/reperfusion injury acting as a mediator of hepatic preconditioning. However, the mechanisms involved are still poorly understood. In this study, we have investigated the mechanisms by which short-term exposure to the NO donor (Z)-1-(N-methyl-N-[6-(N-methylammoniohexyl)amino])-diazen-1-ium-1,2-diolate (NOC-9) increases hepatocyte tolerance to hypoxic injury. Isolated rat hepatocytes preincubated 15 min with NOC-9 (0.250 mM) became resistant to the killing caused by hypoxia. NOC-9 cytoprotection did not involve the activation of protein kinase C, but was instead blocked by inhibiting soluble guanylate cyclase with 1H-(1,2,4)-oxadiazolo-(4,3) quinoxalin-1-one (ODQ) (50 microM) or cGMP-dependent kinase (cGK) with KT 5823 (5 microM). Conversely, cGMP analogue, 8Br-cGMP (50 microM) mimicked the effect of NOC-9. Western blot analysis revealed that hepatocyte treatment with NOC-9 or 8Br-cGMP significantly increased dual phosphorylation of p38 MAPK. The activation of p38 MAPK was abolished by inhibiting guanylate cyclase or cGK. Pretreatment with NO significantly reduced intracellular Na(+) accumulation in hypoxic hepatocytes. This effect was reverted by KT 5823 as well as by the p38 MAPK inhibitor SB203580. SB203580 also reverted NOC-9 protection against hypoxic injury. Altogether, these results demonstrated that NO can induce hepatic preconditioning by activating p38 MAPK through a guanylate cyclase/cGK-mediated pathway.


Assuntos
Hepatócitos/metabolismo , Precondicionamento Isquêmico , Óxido Nítrico/metabolismo , Transdução de Sinais , Animais , Western Blotting , Carbazóis/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Radicais Livres , Guanilato Ciclase/metabolismo , Hipóxia , Imidazóis/farmacologia , Indóis/farmacologia , Fígado/lesões , Fígado/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Fosforilação , Proteína Quinase C/metabolismo , Piridinas/farmacologia , Ratos , Sódio/metabolismo , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno
4.
Hepatology ; 37(2): 277-85, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12540777

RESUMO

Atrial natriuretic peptide (ANP) reduces ischemia and/or reperfusion damage in several organs, but the mechanisms involved are largely unknown. We used freshly isolated rat hepatocytes to investigate the mechanisms by which ANP enhances hepatocyte resistance to hypoxia. The addition of ANP (1 micromol/L) reduced the killing of hypoxic hepatocytes by interfering with intracellular Na(+) accumulation without ameliorating adenosine triphosphate (ATP) depletion and pH decrease caused by hypoxia. The effects of ANP were mimicked by 8-bromo-guanosine 3', 5'-cyclic monophosphate (cGMP) and were associated with the activation of cGMP-dependent kinase (cGK), suggesting the involvement of guanylate cyclase-coupled natriuretic peptide receptor (NPR)-A/B ANP receptors. However, stimulating NPR-C receptor with des-(Gln(18), Ser(19),Gly(20),Leu(21),Gly(22))-ANP fragment 4-23 amide (C-ANP) also increased hepatocyte tolerance to hypoxia. C-ANP protection did not involve cGK activation but was instead linked to the stimulation of protein kinase C (PKC)-delta through G(i) protein- and phospholipase C-mediated signals. PKC-delta activation was also observed in hepatocytes receiving ANP. The inhibition of phospholipase C or PKC by U73122 and chelerythrine, respectively, significantly reduced ANP cytoprotection, indicating that ANP interaction with NPR-C receptors also contributed to cytoprotection. In ANP-treated hepatocytes, the stimulation of both cGK and PKC-delta was coupled with dual phosphorylation of p38 mitogen-activated protein kinase (MAPK). The p38 MAPK inhibitor SB203580 abolished ANP protection by reverting p38 MAPK-mediated regulation of Na(+) influx by the Na(+)/H(+) exchanger. In conclusion, ANP recruits 2 independent signal pathways, one mediated by cGMP and cGK and the other associated with G(i) proteins, phospholipase C, and PKC-delta. Both cGK and PKC-delta further transduce ANP signals to p38 MAPK that, by maintaining Na(+) homeostasis, are responsible for ANP protection against hypoxic injury.


Assuntos
Fator Natriurético Atrial/metabolismo , Hipóxia Celular/fisiologia , Citoproteção , Hepatócitos/fisiologia , Animais , Fator Natriurético Atrial/farmacologia , GMP Cíclico/metabolismo , Ativação Enzimática/fisiologia , Hepatócitos/efeitos dos fármacos , Homeostase , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Sódio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...