Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Gerontol ; 188: 112379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378048

RESUMO

Chondrocytes are the exclusive cellular constituents of articular cartilage, and their functional status governs the health of the cartilage. The primary factor contributing to the deterioration of cartilage structure and function is chondrocyte senescence. In hypoxia and hypodextrose environment, chondrocytes heavily rely on glycolysis for energy metabolism. Mitochondria, acting as the regulatory hub for chondrocyte energy metabolism, exhibit dysfunction before chondrocyte senescence, indicating their crucial involvement in the process. Previous research has suggested that molecules associated with mitochondrial quality control mechanisms can effectively restore mitochondrial function and alleviate chondrocyte senescence. However, there remains to be clarity regarding the relationship between mitochondrial quality control mechanisms and differences in efficacy among various target molecules, which pose challenges when evaluating them in chondrocytes. By conducting a comprehensive review of the existing literature on mitochondrial quality control mechanisms and chondrocyte senescence, we gain further insights into this intricate relationship while identifying promising targets that could potentially open up novel avenues for the treatment of chondrocyte senescence.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Senescência Celular , Condrócitos/metabolismo , Mitocôndrias/metabolismo
2.
Regen Biomater ; 11: rbad104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38235061

RESUMO

Platelet-rich plasma (PRP) that has various growth factors has been used clinically in cartilage repair. However, the short residence time and release time at the injury site limit its therapeutic effect. The present study fabricated a granular hydrogel that was assembled from gelatin microspheres and tannic acid through their abundant hydrogen bonding. Gelatin microspheres with the gelatin concentration of 10 wt% and the diameter distribution of 1-10 µm were used to assemble by tannic acid to form the granular hydrogel, which exhibited elasticity under low shear strain, but flowability under higher shear strain. The viscosity decreased with the increase in shear rate. Meanwhile, the granular hydrogel exhibited self-healing feature during rheology test. Thus, granular hydrogel carrying PRP not only exhibited well-performed injectability but also performed like a 'plasticine' that possessed good plasticity. The granular hydrogel showed tissue adhesion ability and reactive oxygen species scavenging ability. Granular hydrogel carrying PRP transplanted to full-thickness articular cartilage defects could integrate well with native cartilage, resulting in newly formed cartilage articular fully filled in defects and well-integrated with the native cartilage and subchondral bone. The unique features of the present granular hydrogel, including injectability, plasticity, porous structure, tissue adhesion and reactive oxygen species scavenging provided an ideal PRP carrier toward cartilage tissue engineering.

3.
J Orthop Surg Res ; 18(1): 820, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37915040

RESUMO

BACKGROUND: Antiepileptic drugs (AEDs) harm bone health and are significantly associated with osteoporosis development. In this study, we aimed to explore the mechanisms involved in carbamazepine (CBZ) and microRNA (miR)-20a-5p/ubiquitin-specific peptidase 10 (USP10)/S-phase kinase-associated protein 2 (SKP2) axis in osteoporosis. METHODS: Human bone marrow mesenchymal stem cells (BMSCs) were treated with different concentrations of CBZ. Knocking down or overexpressing miR-20a-5p, USP10, and SKP2 cell lines were constructed. The expressions of miR-20a-5p, USP10, SKP2, runt-related transcription factor 2 (Runx2), Alkaline phosphatase (ALP), Osterix (Osx), osteocalcin (OCN) and Collagen I were detected with western blot (WB) and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Alizarin Red S (ARS) staining was performed to measure calcium deposition. Dual-luciferase assay and RNA immunoprecipitation (RIP) were applied to verify the binding relationship between miR-20a-5p and USP10. USP10 and SKP2 combination was verified by Co-Immunopurification (Co-IP). The stability of the SKP2 protein was verified by Cycloheximide chase assay. RESULTS: CBZ could reduce cell activity. ALP activity and ARS staining were enhanced in the osteogenic induction (OM) group. The expressions of Runx2, ALP, Osx, OCN and Collagen I were increased. CBZ reduced miR-20a-5p expressions. Verification experiments showed miR-20a-5p could target USP10. USP10 increased SKP2 stability and promoted SKP2 expression. CBZ regulated miR-20a-5p/USP10/SPK2 and inhibited BMSCs osteogenic differentiation. CONCLUSIONS: CBZ regulated USP10 through miR-20a-5p to affect the deubiquitination of SKP2 and inhibit osteogenic differentiation, which provided a new idea for osteoporosis treatment.


Assuntos
MicroRNAs , Osteoporose , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Osteogênese/genética , Células Cultivadas , Diferenciação Celular/genética , Osteoporose/genética , Carbamazepina/farmacologia , Fosfatase Alcalina/metabolismo , Colágeno/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...