Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 3(12): 3391-3399, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38155651

RESUMO

Photoexcitation of keto-enamine allows intramolecular proton transfer from C-NH to C=O, leading to tautomerization, while the photogenerated isomers are excluded from the study of photocatalytic applications. Herein, we demonstrate the photoisomerization of keto-enamine linkages on covalent organic frameworks (COFs) induced by excited-state intramolecular proton transfer (ESIPT). Partial enolization generates partially enolized photoisomers with a mixture of keto (C=O) and enol (OH) forms, conferring extended π-conjugation with an increase in electron density. The spatially separated D-A configuration is thus rebuilt with the enol-imine-linked branch as a donor and the keto-enamine-linked branch as an acceptor, and in turn, the photoinduced charges transfer between the two adjacent branches with a long lifetime. We further prove that the partially enolized photoisomer is a key transition instead of the keto-enamine form as an excited-state model to understand the photocatalytic behaviors. Therefore, ESIPT-induced photoisomerization must be considered for rationally designing keto-enamine-linked COFs with enhanced photocatalytic activity. Also, our study points toward the importance of controlling excited-state structures for long-lived separated charges, which is of particular interest for optoelectronic applications.

2.
ACS Appl Mater Interfaces ; 15(9): 11678-11690, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36808942

RESUMO

The integration of the glycerol oxidation reaction (GOR) with the hydrogen evolution reaction in photoelectrochemical (PEC) cells is a desirable alternative to PEC water splitting since a large quantity of glycerol is easily accessible as the byproduct from the biodiesel industry. However, the PEC valorization of glycerol to the value-added products suffers from low Faradaic efficiency and selectivity, especially in acidic conditions, which is beneficial for hydrogen production. Herein, by loading bismuth vanadate (BVO) with a robust catalyst composed of phenolic ligands (tannic acid) coordinated with Ni and Fe ions (TANF), we demonstrate a modified BVO/TANF photoanode for the GOR with a remarkable Faradaic efficiency of over 94% to value-added molecules in a 0.1 M Na2SO4/H2SO4 (pH = 2) electrolyte. The BVO/TANF photoanode achieved a high photocurrent of 5.26 mA·cm-2 at 1.23 V versus reversible hydrogen electrode under 100 mW/cm2 white light irradiation for formic acid production with 85% selectivity, equivalent to 573 mmol/(m2·h). Transient photocurrent and transient photovoltage techniques and electrochemical impedance spectroscopy along with intensity-modulated photocurrent spectroscopy indicated that the TANF catalyst could accelerate hole transfer kinetics and suppress charge recombination. Comprehensive mechanistic investigations reveal that the GOR is initiated by the photogenerated holes of BVO, while the high selectivity to formic acid is attributed to the selective adsorption of primary hydroxyl groups in glycerol on TANF. This study provides a promising avenue for highly efficient and selective formic acid generation from biomass in acid media via PEC cells.

3.
Chem Commun (Camb) ; 59(13): 1777-1780, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36722412

RESUMO

Photocatalytic lignin valorization has caught widespread attention; yet the reaction systems often employ noble metal complexes, hydrogen atom transfer (HAT) agents, and/or sacrificial electron donors/acceptors that do not comply with atom economy or environmental friendliness. Herein, we discovered that N-phenylphenothiazine (PTH) as a metal-free photocatalyst induced the cleavage of the lignin Cα-Cß bond under ambient conditions free of those additional agents with a high yield and selectivity toward benzoic acid. Transient spectroscopic investigations revealed that the energy-demanding Cα-Cß bond cleavage was induced by the potent oxidant, 2PTH˙+*, that was derived from consecutive two-photon excitation of PTH.

4.
ACS Nano ; 16(12): 21002-21012, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36448781

RESUMO

Carbon nitride semiconductors are competitive candidates for visible-light-responsive photocatalysts, but encounter weakened exciton dissociation arising from the elevated Coulomb force of singlet Frenkel excitons with narrowing bandgaps. We overcome this contradiction by co-infusing π-electron-rich domains and polarizable hydroxyl units into mesoporous carbon nitride, realized by solution thermal shock. The embedded delocalized π-conjugated aromatic domains derived from nonconjugated macromolecules downshift the conduction band edge and contribute to spatial separation of photogenerated electrons in the lowest unoccupied molecular orbital and holes in the highest occupied molecular orbital. Meanwhile, polarizable hydroxyls induce distinct electron flow from heptazine-based skeletons to periphery sites and enhance water adsorption as well as proton reduction capacity. Consequently, the polymeric carbon nitride delivers an enhanced hydrogen evolution rate that is 17.5 times larger than thermally treated counterparts derived from urea fabricated via conventional strategies. These results show that our strategy can infuse different functional motifs into carbon nitride and thus improve photocatalytic activity.

5.
J Am Chem Soc ; 144(43): 19942-19952, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36266241

RESUMO

Photoredox-mediated reversible deactivation radical polymerization (RDRP) is a promising method of precise synthesis of polymers with diverse structures and properties. However, its mechanism mainly based on the outer-sphere electron transfer (OSET) leads to stringent requirements for an efficient photocatalyst. In this paper, the zwitterionic organoboranes [L2B]+X- are prepared and applied in reversible addition-fragmentation chain transfer (RAFT) polymerization with the photoinduced ion-pair inner-sphere electron transfer (IP-ISET) mechanism. The ion-pair electron transfer mechanism and the formation of the radical [L2B]• are supported by electron paramagnetic resonance (EPR) radical capture experiments, 1H/11B NMR spectroscopy, spectroelectrochemical spectroscopy, transient absorption spectroscopy, theoretical calculation, and photoluminescence quenching experiments. Photoluminescence quenching experiments show that when [CTA]/[[L2B]+] ≥ 0.6, it is static quenching because of the in situ formation of [L2B]+[ZCS2]-, the real catalytic species. [L2B]+[C3H7SCS2]- is synthesized, and its photoluminescence lifetime is the same as the lifetime in the static quenching experiment, indicating the formation of [L2B]+[ZCS2]- in polymerization and the IP-ISET mechanism. The matrix-assisted laser desorption ionization time-of-flight mass (MALDI-TOF MS) spectra show that the structure of [C3H7SCS2] was incorporated into the polymer, indicating that ion-pair electron transfer occurs in catalytic species. The polymerization shows high catalytic activity at ppb catalyst loading, a wide range of monomers, excellent tolerance in the presence of 5 mol % phenolic inhibitors, and the synthesis of ultrahigh-molecular-weight polymers. This protocol with the IP-ISET mechanism exhibits a value in the development of new organic transformations and polymerization methods.


Assuntos
Elétrons , Polímeros , Polimerização , Polímeros/química , Catálise , Peso Molecular
6.
J Am Chem Soc ; 144(16): 7043-7047, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35271254

RESUMO

Photoexcitation of molecular radicals can produce strong reducing agents; however, the limited lifetimes of the doublet excited states preclude many applications. Herein, we propose and demonstrate a general strategy to translate a highly energetic electron from a doublet excited state to a ZrO2 insulator, thereby increasing the lifetime by about 6 orders of magnitude while maintaining a reducing potential less than -2.4 V vs SCE. Specifically, red light excitation of a salicylic acid modified perylene diimide radical anion PDI•- anchored to a ZrO2 insulator yields a ZrO2(e-)|PDI charge separated state with an ∼10 µs lifetime in 23% yield. The ZrO2(e-)s were shown to drive CO2 → CO reduction with a Re catalyst present in micromolar concentrations. More broadly, this strategy provides new opportunities to reduce important reagents and catalysts at low concentrations through diffusional electron transfer.


Assuntos
Luz , Substâncias Redutoras , Catálise , Transporte de Elétrons , Elétrons
7.
Chem Commun (Camb) ; 57(46): 5634-5637, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33977952

RESUMO

Pure organic dye QAP-C8 based on quinacridone (QA) with octyl side chains as the donor and pyridine dicarboxylic acid (PDA) as the acceptor was first used in both the photoanode and the photocathode of photoelectrochemical cells. A tandem device with QAP-C8 as the photosensitizer realized overall water splitting and showed a STH of 0.11% under neutral pH conditions without an external bias.


Assuntos
Corantes/química , Técnicas Eletroquímicas , Compostos Heterocíclicos de 4 ou mais Anéis/química , Fármacos Fotossensibilizantes/química , Energia Solar , Concentração de Íons de Hidrogênio , Processos Fotoquímicos , Água/química
8.
Sci Rep ; 7(1): 4499, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28674396

RESUMO

Enteromorpha prolifera (E. prolifera), one of the main algae genera for green tide, significantly influences both the coastal ecological environment and seawater quality. How to effectively utilize this waste as reproducible raw resource with credible application mechanism are urgent environmental issues to be solved. Herein, E. prolifera was converted to attractive fluorescent carbon nanodots (CNDs) by one-pot green hydrothermal process. The purity and quantum yields for the as-prepared CNDs can be enhanced upon the post-treatment of ethanol sedimentation. The CNDs can be well dispersed in aqueous medium with uniform spherical morphology, narrow size distribution and average size of 2.75 ± 0.12 nm. The ease synthesis and relatively high quantum yields of the CNDs make E. prolifera inexpensive benefit to the human and nature, such as applications in efficient cell imaging and fiber staining. Furthermore, it was discovered that the fluorescence intensity of the CNDs can be selectively quenched upon Fe3+ addition, which can be used for specific sensitive assay and removal of Fe3+ in aqueous medium. More importantly, it was reasonably proposed that the quenching was resulted from the synergistic effects of CNDs aggregation and Fe3+-CNDs charge-transfer transitions due to the coordination interactions between Fe3+ and the oxygenous groups on the CNDs.


Assuntos
Biomassa , Carbono/metabolismo , Clorófitas/fisiologia , Nitrogênio/metabolismo , Enxofre/metabolismo , Células HeLa , Humanos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Small ; 13(13)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28121378

RESUMO

Tungsten oxide (WO3-x ), a new alternative to conventional semiconductor material, has attracted numerous attentions owning to its widespread potential applications. Various methods have been reported for the synthesis of WO3-x nanostructures such as nanowires or nanodots. However, templates or surfactants are often required for the synthesis, which significantly complicate the process and hinder the broad applications. Herein, one-pot template/surfactant-free solvothermal method is proposed to synthesize the WO3-x nanostructures including fluorescent quantum dots (QDs) and bundle-like nanowires simultaneously. The as-prepared WO3-x QDs can be well dispersed in aqueous medium, exhibit excellent photoluminescent properties, and show an average size of 3.25 ± 0.25 nm as evidenced by transmission electron microscopy. Meanwhile, the diameter of the WO3-x nanowires is found to be about 27.5 nm as manifested by the scanning electron microscope images. The generation mechanism for these two WO3-x nanostructures are systematically studied and proposed. The WO3-x QDs have been successfully applied in efficient fluorescent staining and specific ferric ion detection. Moreover, the WO3-x nanowires can be utilized as effective dielectric materials for electromagnetic wave absorption.

10.
Analyst ; 141(9): 2657-64, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-26878217

RESUMO

Carbon quantum dots (CQDs) are attracting tremendous interest owing to their low toxicity, water dispersibility, biocompatibility, optical properties and wide applicability. Herein, CQDs with an average diameter of (4.0 ± 0.2) nm and high crystallinity were produced simply from the electrochemical oxidation of a graphite electrode in alkaline alcohols. The as-formed CQDs dispersion was colourless but the dispersion gradually changed to bright yellow when stored in ambient conditions. Based on UV-Vis absorption, fluorescence spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM), this colour change appeared to be due to oxygenation of surface species over time. Furthermore, the CQDs were used in specific and sensitive detection of ferric ion (Fe(3+)) with broad linear ranges of 10-200 µM with a low limit of detection of 1.8 µM (S/N = 3). The application of the CQDs for Fe(3+) detection in tap water was demonstrated and the possible mechanism was also discussed. Finally, based on their good characteristics of low cytotoxicity and excellent biocompatibility, the CQDs were successfully applied to cell imaging.


Assuntos
Álcoois/química , Grafite/química , Ferro/análise , Imagem Molecular/métodos , Pontos Quânticos/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Eletroquímica , Eletrodos , Camundongos , Oxirredução , Pontos Quânticos/toxicidade
11.
Nanoscale ; 8(10): 5470-7, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26891173

RESUMO

Carbon nanodots (C-dots), a new type of potential alternative to conventional semiconductor quantum dots, have attracted numerous attentions in various applications including bio-chemical sensing, cell imaging, etc., due to their chemical inertness, low toxicity and flexible functionalization. Various methods including electrochemical (EC) methods have been reported for the synthesis of C-dots. However, complex procedures and/or carbon source-containing electrodes are often required. Herein, solid-state C-dots were simply prepared by bottom-up EC carbonization of nitriles (e.g. acetonitrile) in the presence of an ionic liquid [e.g. 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6)], using carbon-free electrodes. Due to the positive charges of BMIM(+) on the C-dots, the final products presented in a precipitate form on the cathode, and the unreacted nitriles and BMIMPF6 can be easily removed by simple vacuum filtration. The as-prepared solid-state C-dots can be well dispersed in an aqueous medium with excellent photoluminescence properties. The average size of the C-dots was found to be 3.02 ± 0.12 nm as evidenced by transmission electron microscopy. Other techniques such as UV-vis spectroscopy, fluorescence spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were applied for the characterization of the C-dots and to analyze the possible generation mechanism. These C-dots have been successfully applied in efficient cell imaging and specific ferric ion detection.


Assuntos
Carbono/química , Eletroquímica/métodos , Líquidos Iônicos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Eletrodos , Células HeLa , Humanos , Imidazóis/química , Líquidos Iônicos/química , Íons , Luz , Luminescência , Microscopia Eletrônica de Transmissão , Fotoquímica , Espectroscopia Fotoeletrônica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...