Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 11(1): 211, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752514

RESUMO

BACKGROUND: Ocean warming is a leading cause of increasing episodes of coral bleaching, the dissociation between coral hosts and their dinoflagellate algal symbionts in the family Symbiodiniaceae. While the diversity and flexibility of Symbiodiniaceae is presumably responsible for variations in coral response to physical stressors such as elevated temperature, there is little data directly comparing physiological performance that accounts for symbiont identity associated with the same coral host species. Here, using Pocillopora damicornis harboring genotypically distinct Symbiodiniaceae strains, we examined the physiological responses of the coral holobiont and the dynamics of symbiont community change under thermal stress in a laboratory-controlled experiment. RESULTS: We found that P. damicornis dominated with symbionts of metahaplotype D1-D4-D6 in the genus Durusdinium (i.e., PdD holobiont) was more robust to thermal stress than its counterpart with symbionts of metahaplotype C42-C1-C1b-C1c in the genus Cladocopium (i.e., PdC holobiont). Under ambient temperature, however, the thermally sensitive Cladocopium spp. exhibited higher photosynthetic efficiency and translocated more fixed carbon to the host, likely facilitating faster coral growth and calcification. Moreover, we observed a thermally induced increase in Durusdinium proportion in the PdC holobiont; however, this "symbiont shuffling" in the background was overwhelmed by the overall Cladocopium dominance, which coincided with faster coral bleaching and reduced calcification. CONCLUSIONS: These findings support that lineage-specific symbiont dominance is a driver of distinct coral responses to thermal stress. In addition, we found that "symbiont shuffling" may begin with stress-forced, subtle changes in the rare biosphere to eventually trade off growth for increased resilience. Furthermore, the flexibility in corals' association with thermally tolerant symbiont lineages to adapt or acclimatize to future warming oceans should be viewed with conservative optimism as the current rate of environmental changes may outpace the evolutionary capabilities of corals. Video Abstract.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/fisiologia , Recifes de Corais , Simbiose/fisiologia , Fotossíntese
2.
Mol Ecol Resour ; 21(1): 137-152, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32876380

RESUMO

Collectively called zooxanthellae, photosynthetic dinoflagellates in the family Symbiodiniaceae are typical endosymbionts that unequivocally mediate coral responses to environmental changes. Symbiodiniaceae are genetically diverse, encompassing at least nine phylogenetically distinct genera (clades A-I). The ribosomal internal transcribed spacer 2 (ITS2) region is commonly utilized for determining Symbiodiniaceae diversity within clades. However, ITS2 is often inadvertently interpreted together with the tailing part of the ribosomal RNA genes (5.8S and 28S or equivalent), leading to unresolved taxonomy and equivocal annotations. To overcome this hurdle, we mined in GenBank and expert reference databases for ITS2 sequences of Symbiodiniaceae having explicit boundaries with adjacent rRNAs. We profiled a Hidden Markov Model of the ITS2-proximal 5.8S-28S rRNA interaction, which was shown to facilitate the delimitation of Symbiodiniaceae ITS2 from GenBank, while considerably reducing sequence ambiguity and redundancy in reference databases. The delineation of ITS2 sequences unveiled intra-clade sequence diversity and inter-clade secondary structure conservation. We compiled the clean data into a non-redundant database that archives the largest number of Symbiodiniaceae ITS2 sequences known to date with definite genotype/subclade representations and well-defined secondary structures. This database provides a fundamental reference catalog for consistent and precise genotyping of Symbiodiniaceae and a tool for automated annotation of user-supplied sequences.


Assuntos
Antozoários , DNA Espaçador Ribossômico/genética , Dinoflagellida , Animais , Antozoários/microbiologia , Bases de Dados Genéticas , Dinoflagellida/genética , Genótipo , Filogenia , RNA Ribossômico 28S/genética , RNA Ribossômico 5,8S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...