Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 266: 115568, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832482

RESUMO

The tea plant accumulates elevated levels of fluoride (F) from environmental sources. Drinking tea containing high F levels poses a potential threat to human health. Selenium (Se) was applied by foliar spray to investigate its effects on F accumulation and physiology in tea plant. Foliar application of different forms of Se, i.e., Na2SeO3, Kappa-selenocarrageenan, Selenomethionine and Nanoselenium, reduced F content in tea leaves by 10.17 %-44.28 %, 16.12 %-35.41 %, 22.19 %-45.99 % and 22.24 %-43.82 %, respectively. Foliar spraying Se could increase F accumulation in pectin through increasing pectin content and pectin demethylesterification to bind more F in the cell wall, which decreased the proportion of water-soluble fluoride in tea leaves. Application of Se significantly decreased the contents of chromium (39.6 %-72.0 %), cadmium (48.3 %-84.4 %), lead (2.2 %-44.4 %) and copper (14.1 %-44.6 %) in tea leaves. Foliar spraying various forms of Se dramatically increased the Se content and was efficiently transformed into organic Se accounting for more than 80 % in tea leaves. All Se compounds increased peroxidase activity by 3.3 %-35.5 % and catalase activity by 2.6 %-99.4 %, reduced malondialdehyde content by 5.6 %-37.1 %, and increased the contents of chlorophyll by 0.65 %-31.8 %, carotenoids by 0.24 %-27.1 %, total catechins by 1.6 %-21.0 %, EGCG by 4.4 %-17.6 % and caffeine by 9.1 %-28.6 %. These results indicated that Se application could be served as a potential efficient and safe strategy diminishing the concentration of F in tea leaves.


Assuntos
Camellia sinensis , Selênio , Humanos , Selênio/metabolismo , Fluoretos/análise , Antioxidantes/metabolismo , Camellia sinensis/química , Folhas de Planta/metabolismo , Chá , Pectinas/metabolismo
2.
Food Chem X ; 18: 100681, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37215200

RESUMO

The effects of different brewing water samples, including natural drinking water (NDW), pure water (PW), mineral water (MW), distilled water (DW), and tap water (TW) on flavor and quality of green tea infusion were investigated. The results showed the dissolution rate of mineral substances varied greatly depend on the type of water used. Notably, the tea infusion brewed with MW showed the highest taste response and darker but higher brightness in color. Furthermore, the content of volatile compounds was highest in tea infusion brewed with NDW and lowest in tea infusion brewed with MW. The mineral substances content and pH were the main factors affecting volatile compounds in green tea infusion. Thereinto, Ca2+ and Fe3+ remarkably affected the content of alcohols and aldehydes in volatile compounds. These results suggested that water with a neutral pH value and lower mineral substance content is more conducive for brewing green tea.

3.
Food Chem ; 374: 131713, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34920400

RESUMO

Tea is one of the most important beverages worldwide, is produced in several distinct geographical regions, and is traded on the global market. The ability to determine the geographical origin of tea products helps to ensure authenticity and traceability. This paper reviews the recent research on authentication of tea using a combination of instrumental and chemometric methods. To determine the production region of a tea sample, instrumental methods based on analyzing isotope and mineral element contents are suitable because they are less affected by tea variety and processing methods. Chemometric analysis has proven to be a valuable method to identify tea. Principal component analysis (PCA) and linear discriminant analysis (LDA) are the most preferred methods for processing large amounts of data obtained through instrumental component analysis.


Assuntos
Camellia sinensis , Quimiometria , Análise Discriminante , Folhas de Planta , Análise de Componente Principal , Chá
4.
Plant Physiol Biochem ; 158: 65-75, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33296847

RESUMO

Tea plant (Camellia sinensis (L.) O. Kuntze) is known to accumulate high concentrations of fluoride (F) in its leaves; however, the underlying mechanism of F accumulation remains unclear. The main objective of this study was to investigate the homeostatic self-defense mechanisms of tea leaves to F supplementation (0, 5, 20, and 50 mgL-1) by metabolomics and ionomics. We identified a total of 96 up-regulated and 40 down-regulated metabolites in tea leaves treated with F. Of these different compounds, minor polypeptides, carbohydrates and amino acids played valuable roles in the F-tolerating mechanism of tea plant. After F treatments, the concentrations of sodium (Na), ferrum (Fe), manganese (Mn), and molybdenum (Mo) were significantly increased in tea leaves, whereas the aluminum (Al) was decreased. These findings suggest that the ionic balance and metabolites are attributable to the development of F tolerance, providing new insight into tea plant adaptation to F stress.


Assuntos
Camellia sinensis/metabolismo , Fluoretos/toxicidade , Estresse Fisiológico , Camellia sinensis/efeitos dos fármacos , Íons , Metaboloma , Folhas de Planta
5.
J Sci Food Agric ; 101(2): 379-387, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32623727

RESUMO

Tea is the one of the most popular non-alcoholic caffeinated beverages in the world. Tea is produced from the tea plant (Camellia sinensis (L.) O. Kuntze), which is known to accumulate fluoride. This article systematically analyzes the literature concerning fluoride absorption, transportation and fluoride tolerance mechanisms in tea plants. Fluoride bioavailability and exposure levels in tea infusions are also reviewed. The circulation of fluoride within the tea plantation ecosystems is in a positive equilibrium, with greater amounts of fluoride introduced to tea orchards than removed. Water extractable fluoride and magnesium chloride (MgCl2 ) extractable fluoride in plantation soil are the main sources of absorption by tea plant root via active trans-membrane transport and anion channels. Most fluoride is readily transported through the xylem as F- /F-Al complexes to leaf cell walls and vacuole. The findings indicate that tea plants employ cell wall accumulation, vacuole compartmentalization, and F-Al complexes to co-detoxify fluoride and aluminum, a possible tolerance mechanism through which tea tolerates higher levels of fluoride than most plants. Furthermore, dietary and endogenous factors influence fluoride bioavailability and should be considered when exposure levels of fluoride in commercially available dried tea leaves are interpreted. The relevant current challenges and future perspectives are also discussed. © 2020 Society of Chemical Industry.


Assuntos
Camellia sinensis/química , Fluoretos/análise , Fluoretos/metabolismo , Alumínio/análise , Alumínio/metabolismo , Disponibilidade Biológica , Transporte Biológico , Camellia sinensis/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Exposição Dietética/efeitos adversos , Exposição Dietética/análise , Humanos , Folhas de Planta/química , Folhas de Planta/metabolismo , Medição de Risco , Solo/química , Chá/química
6.
Environ Pollut ; 267: 115603, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254693

RESUMO

Tea plants (Camellia sinensis (L.) O. Kuntze) can hyperaccumulate fluoride (F). The accumulation of F in tea leaves may induce serious health problems in tea consumers. It has been reported that selenium (Se) could reduce the accumulation of heavy metals in plants. Thus, the aim of this study was to investigate whether exogenous Se could reduce F accumulation in tea plant. The results showed that Se treatment could decrease F content in tea leaves, increase F accumulation in roots, decrease the proportion of water-soluble F in tea leaves and increase the Se content. Low F levels promoted the accumulation of Se in tea plants. Se treatment could modulate F-induced oxidative injury by decreasing malondialdehyde level and increasing the activities of superoxide dismutase, peroxidase and catalase. Moreover, Se inhibited F-induced increase in leaf iron, calcium, aluminum, leaf and root magnesium and lead contents. These results showed that Se application could decrease F content and increase Se content in tea leaves, which may be served as a novel strategy for production of healthy tea.


Assuntos
Camellia sinensis , Selênio , Fluoretos , Magnésio , Folhas de Planta , Chá
7.
J Sci Food Agric ; 100(8): 3554-3559, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32124449

RESUMO

BACKGROUND: Tea (Camellia sinensis (L.) O. Kuntze) is a hyper-accumulator of fluoride (F). To understand F uptake and distribution in living plants, we visually evaluated the real-time transport of F absorbed by roots and leaves using a positron-emitting (18 F) fluoride tracer and a positron-emitting tracer imaging system. RESULTS: F arrived at an aerial plant part about 1.5 h after absorption by roots, suggesting that tea roots had a retention effect on F, and then was transported upward mainly via the xylem and little via the phloem along the tea stem, but no F was observed in the leaves within the initial 8 h. F absorbed via a cut petiole (leaf 4) was mainly transported downward along the stem within the initial 2 h. Although F was first detected in the top and ipsilateral leaves, it was not detected in tea roots by the end of the monitoring. During the monitoring time, F principally accumulated in the node. CONCLUSION: F uptake by the petiole of excised leaf and root system was realized in different ways. The nodes indicated that they may play pivotal roles in the transport of F in tea plants. © 2020 Society of Chemical Industry.


Assuntos
Camellia sinensis/metabolismo , Fluoretos/metabolismo , Transporte Biológico , Camellia sinensis/química , Fluoretos/análise , Floema/química , Floema/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Xilema/química , Xilema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...