Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806847

RESUMO

With carbon fiber, it is difficult to load semiconductor photocatalysts and easy to shed off thanks to its smooth surface and few active groups, which has always been a problem in the synthesis of photocatalysts. In the study, SrTiO3 nanoparticles were loaded onto the Tencel fibers using the solvothermal method, and then the Tencel fibers were carbonized at a high temperature under the condition of inert gas to form carbon fibers, thus SrTiO3@CF photocatalytic composite materials with solid core shell structure were prepared. Meanwhile, Mn ions were added into the SrTiO3 precursor reagent in the solvothermal experiment to prepare Mn-doped Mn-SrTiO3@CF photocatalytic composite material. XPS and EPR tests showed that the prepared Mn-SrTiO3@CF photocatalytic composite was rich in oxygen vacancies. The existence of these oxygen vacancies formed oxygen defect states (VOs) below the conduction band, which constituted the capture center of photogenerated electrons and significantly improved the photocatalytic activity. The photocatalytic hydrogen experimental results showed that the photocatalytic hydrogen production capacity of Mn-SrTiO3@CF composite material with 5% Mn-doped was six times that of the SrTiO3@CF material, and the doping of Mn ions not only promoted the red shift of the light absorption boundary and the extension to visible light, but also improved the separation and migration efficiency of photocarriers. In the paper, the preparation method solves the difficulty of loading photocatalysts on CF and provides a new design method for the recycling of catalysts, and we improve the hydrogen production performance of photocatalysts by Mn-doped modification and the introduction of oxygen vacancies, which provides a theoretical method for the practical application of hydrogen energy.

2.
Nanoscale Res Lett ; 12(1): 371, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28549376

RESUMO

The SrTiO3 modified rutile TiO2 composite nanofibers were synthesized by a simple electrospinning technique. The result of XRD, SEM and TEM indicate that the SrTiO3/TiO2 heterojuction has been prepared successfully. Compared with the TiO2 and SrTiO3, the photocatalytic activity of the SrTiO3/TiO2 (rutile) for the degradation of methyl orange exhibits an obvious enhancement under UV illumination. which is almost 2 times than that of bare TiO2 (rutile) nanofiber. Further, the high crystallinity and photon-generated carrier separation of the SrTiO3/TiO2 heterojuction are considered as the main reason for this enhancement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...