Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Comp Immunol ; 156: 105172, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38537730

RESUMO

Interferon regulatory factor 8 (IRF8) is an important transcriptional regulatory factor involving in multiple biological process, such as the antiviral immune response, immune cell proliferation and differentiation. In the present study, the involvement of a previously identified IRF8 homologue (CgIRF8) in regulating haemocyte proliferation of oyster were further investigated. CgIRF8 mRNA transcripts were detectable in all the stages of C. gigas larvae with the highest level in D-veliger (1.76-fold of that in zygote, p < 0.05). Its mRNA transcripts were also detected in all the three haemocyte subpopulations of adult oysters with the highest expression in granulocytes (2.79-fold of that in agranulocytes, p < 0.01). After LPS stimulation, the mRNA transcripts of CgIRF8 in haemocytes significantly increased at 12 h and 48 h, which were 2.04-fold and 1.65-fold (p < 0.05) of that in control group, respectively. Meanwhile, the abundance of CgIRF8 protein in the haemocytes increased significantly at 12 h after LPS stimulation (1.71-fold of that in seawater, p < 0.05). The immunofluorescence assay and Western blot showed that LPS stimulation induced an obvious nucleus translocation of CgIRF8 protein in haemocytes. After the expression of CgIRF8 was inhibited by the injection of CgIRF8 siRNA, the percentage of EdU positive haemocytes, the proportion of granulocytes, and the mRNA expression levels of CgGATA and CgSCL all declined significantly at 12 h after LPS stimulation, which was 0.64-fold (p < 0.05), 0.7-fold (p < 0.05), 0.31-fold and 0.54-fold (p < 0.001) of that in the NC group, respectively. While the expression level of cell proliferation-related protein CgCDK2, CgCDC6, CgCDC45 and CgPCNA were significantly increased (1.99-fold, and 2.41-fold, 3.76-fold and 4.79-fold compared to that in the NC group respectively, p < 0.001). Dual luciferase reporter assay demonstrated that CgIRF8 was able to activate the CgGATA promoter in HEK293T cells after transfection of CgGATA and CgIRF8. These results collectively indicated that CgIRF8 promoted haemocyte proliferation by regulating the expression of CgGATA and other related genes in the immune response of oyster.


Assuntos
Proliferação de Células , Crassostrea , Hemócitos , Fatores Reguladores de Interferon , Lipopolissacarídeos , Animais , Hemócitos/metabolismo , Hemócitos/imunologia , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Crassostrea/imunologia , Lipopolissacarídeos/imunologia , Imunidade Inata , Humanos , Granulócitos/imunologia , Granulócitos/metabolismo , Células HEK293
2.
J Cell Physiol ; 235(11): 7780-7790, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31774184

RESUMO

Glutathione peroxidase 2 (GPX2) participates in many cancers including pancreatic cancer (PC), and overexpression of GPX2 promotes tumor growth. Herein, we identified the role of GPX2 in epithelial-mesenchymal transformation (EMT), invasion, and metastasis in PC. Bioinformatics prediction was applied to select PC-related genes. The regulatory function of GPX2 in PC was explored by treatment with short hairpin RNA against GPX2 or LiCl (activator of wingless-type MMTV integration site [Wnt] pathway) in PC cells. GPX2 level in PC tissues, the levels of GPX2, ß-catenin, Vimentin, Snail, epithelial-cadherin (E-cadherin), matrix metalloproteinase 2 (MMP2), MMP9, and Wnt2 in cells were determined. Subsequently, cell proliferation, invasion, and metastasis were assayed. Bioinformatics analysis revealed that GPX2 was involved in PC development mediated by the Wnt pathway. GPX2 was highly expressed in PC tissues. GPX2 silencing downregulated levels of ß-catenin, Vimentin, Snail, MMP2, MMP9, and Wnt2 but upregulated levels of E-cadherin. It was confirmed that GPX2 silencing suppressed PC cell proliferation, metastasis, and invasion. Furthermore, the trend of EMT and invasion and metastasis of PC induced by the LiCl-activated Wnt pathway was reversed when the GPX2 was silenced. GPX2 silencing could inhibit the Wnt pathway, subsequently suppress PC development.


Assuntos
Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Glutationa Peroxidase/genética , Neoplasias Pancreáticas/patologia , Via de Sinalização Wnt/genética , Adulto , Idoso , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Células Tumorais Cultivadas
3.
J Cell Mol Med ; 24(1): 202-213, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31668012

RESUMO

Ovarian cancer is a common malignancy among women with some clinically approved diagnostic coding gene biomarkers. However, long non-coding RNAs (lncRNAs) have been indicated to play an important role in controlling tumorigenesis of ovarian cancer. Hereby, the aim of the study was to uncover the function of lncRNA LINC00176 in the development and progression of ovarian cancer by regulating ceruloplasmin (CP). Bioinformatics prediction in combination with RT-qPCR analysis for the expression pattern of LINC00176 revealed that LINC00176 was highly expressed in ovarian cancer tissues as well as in ovarian cancer cell lines, respectively. LINC00176 was predominantly localized in the nucleus. Delivery of si-LINC00176, oe-LINC00176, si-BCL3 and si-CP plasmids was conducted to explore the effects of LINC00176 on ovarian cancer. Promoted proliferation, migration and invasion along with reduced apoptosis were observed in cells treated with oe-LINC00176, while si-BCL3 and si-CP were able to block the promoting effects. Investigations with regard to the correlation between LINC00176 and promoter region of CP turned out to be positive via B-cell CLL/lymphoma 3 (BCL3) by means of dual-luciferase reporter gene assay, ChIP and RIP assays. Furthermore, oncogenic properties of the LINC00176/BCL3/CP axis were also demonstrated by tumour formation in vivo generated upon injecting cells in nude mice. Our results demonstrate that restored LINC00176 initiates tumorigenesis in ovarian cancer by increasing CP expression via recruiting BCL3, the mechanism of which represented a potential and promising therapeutic target for the disease.


Assuntos
Proteína 3 do Linfoma de Células B/metabolismo , Biomarcadores Tumorais/metabolismo , Ceruloplasmina/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/patologia , RNA Longo não Codificante/genética , Animais , Apoptose , Proteína 3 do Linfoma de Células B/genética , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Ceruloplasmina/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Prognóstico , RNA Longo não Codificante/antagonistas & inibidores , RNA Interferente Pequeno , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Am J Physiol Gastrointest Liver Physiol ; 317(5): G670-G681, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31369289

RESUMO

In recent studies, microRNAs (miRs) have been widely explored as important regulators in tumor suppression. miR-136 has been suggested to participate in tumor inhibition through control of vital cellular processes, such as angiogenesis, proliferation, and apoptosis. This study aimed to evaluate the effects of overexpressed miR-136 by transferring mimics in gallbladder cancer (GBC) and to assess the functional role of miR-136 in GBC cell behaviors with the involvement of the mitogen-activated protein kinase kinase 4 (MAP2K4)-dependent JNK signaling pathway. Differentially expressed miRs associated with GBC were screened using microarray expression profiles, which identified that miR-136 expression was decreased in GBC. Furthermore, MAP2K4 was validated as a target gene of miR-136. To uncover functional relevance regarding miR-136 and MAP2K4 in GBC, cultured GBC cell lines were prepared to transfect with mimic, inhibitor, siRNA, or vectors. At the same time, the transfected GBC cells were inoculated into nude mice to validate findings in vivo. The obtained results demonstrated that overexpressed miR-136 inhibited angiogenesis and cell proliferation and promoted apoptosis in GBC cell lines in vitro, accompanied by impeded cellular tumorigenicity in nude mice via the suppression of MAP2K4. Moreover, the overexpression of MAP2K4 and the activation of the JNK signaling pathway reversed the inhibitory effects of miR-136 on the angiogenesis and tumorigenicity of GBC cells. Together, our results indicated that overexpressed miR-136 attenuates angiogenesis and enhances cell apoptosis in GBC via the JNK signaling pathway by downregulating the expression of MAP2K4.NEW & NOTEWORTHY This study is based on previous studies suggesting the tumor-suppressive role of microRNA (miR)-136 in various cancers. We aim to clarify whether miR-136 could function as a tumor suppressor in gallbladder cancer (GBC) and an underlying mechanism. In vitro and in vivo assays delineated that the tumor-suppressive role of miR-136 in GBC is achieved through inactivation of the JNK signaling pathway by downregulation of MAP2K4.


Assuntos
Neoplasias da Vesícula Biliar/genética , Sistema de Sinalização das MAP Quinases , MicroRNAs/genética , Animais , Apoptose , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias da Vesícula Biliar/metabolismo , Neoplasias da Vesícula Biliar/patologia , Humanos , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...