Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 850
Filtrar
1.
Angew Chem Int Ed Engl ; : e202407135, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018249

RESUMO

Herein we report on circularly polarized luminescence (CPL) emission originating from supramolecular chirality of organic microcrystals with a |glum| value up to 0.11. The microcrystals were prepared from highly emissive difluoroboron ß-diketonate (BF2dbk) dyes R-1 or S-1 with chiral binaphthol (BINOL) skeletons. R-1 and S-1 exhibit undetectable CPL signals in solution but manifest intense CPL emission in their chiral microcrystals. The chiral superstructures induced by BINOL skeletons were confirmed by XRD analysis. Spectral analysis and theoretical calculations indicate that intermolecular electronic coupling, mediated by the asymmetric stacking in the chiral superstructures, effectively alters excited-state electronic structures and facilitates electron transitions perpendicular to BF2bdk planes. The coupling increases cosθµ,m from 0.05 (monomer) to 0.86 (tetramer) and triggers intense optical activity of BF2bdk. The results demonstrate that optical activity of chromophores within assemblies can be regulated by both orientation and extent of intermolecular electronic couplings.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39011930

RESUMO

Platinum (Pt) has been widely used as cathodic electrocatalysts for the hydrogen evolution reaction (HER) but unfortunately neglected as an anodic electrocatalyst for the oxygen evolution reaction (OER) due to excessively strong bonding with oxygen species in water splitting electrolyzers. Herein we report that fine control over the electronic-structure and local-coordination environment of Pt-rich PtPbCu nanowires (NWs) by doping of iridium (Ir) lowers the overpotential of the OER and simultaneously suppresses the overoxidation of Pt in IrPtPbCu NWs during water electrolysis. In light of the one-dimensional morphology featured with atomically dispersed IrOx species and electronically modulated Pt-sites, the IrPtPbCu NWs exhibit an enhanced OER (175 mV at 10 mA cm-2) and HER (25 mV at 10 mA cm-2) electrocatalytic performance in acidic media and yield a high turnover frequency. For OER at the overpotential of 250 mV, the IrPtPbCu NWs show an enhanced mass activity of 1.51 A mg-1Pt+Ir (about 19 times higher) than Ir/C. For HER at the overpotential of 50 mV, NWs exhibit a remarkable mass activity of 1.35 A mg-1Pt+Ir, which is 2.6-fold relative to Pt/C. Experimental results and theoretical calculations corroborate that the doping of Ir in NWs has the capacity to suppress the formation of Ptx>4 derivates and ameliorate the adsorption free energy of reaction intermediates during the water electrolysis. This approach enabled the realization of a previously unobserved mechanism for anodic electrocatalysts.

3.
NPJ Biofilms Microbiomes ; 10(1): 56, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003275

RESUMO

Dental calculus severely affects the oral health of humans and animal pets. Calculus deposition affects the gingival appearance and causes inflammation. Failure to remove dental calculus from the dentition results in oral diseases such as periodontitis. Apart from adversely affecting oral health, some systemic diseases are closely related to dental calculus deposition. Hence, identifying the mechanisms of dental calculus formation helps protect oral and systemic health. A plethora of biological and physicochemical factors contribute to the physiological equilibrium in the oral cavity. Bacteria are an important part of the equation. Calculus formation commences when the bacterial equilibrium is broken. Bacteria accumulate locally and form biofilms on the tooth surface. The bacteria promote increases in local calcium and phosphorus concentrations, which triggers biomineralization and the development of dental calculus. Current treatments only help to relieve the symptoms caused by calculus deposition. These symptoms are prone to relapse if calculus removal is not under control. There is a need for a treatment regime that combines short-term and long-term goals in addressing calculus formation. The present review introduces the mechanisms of dental calculus formation, influencing factors, and the relationship between dental calculus and several systemic diseases. This is followed by the presentation of a conceptual solution for improving existing treatment strategies and minimizing recurrence.


Assuntos
Biofilmes , Cálculos Dentários , Cálculos Dentários/microbiologia , Cálculos Dentários/prevenção & controle , Humanos , Animais , Biofilmes/crescimento & desenvolvimento , Bactérias/classificação , Saúde Bucal , Boca/microbiologia , Cálcio/metabolismo , Fósforo/metabolismo
4.
J Colloid Interface Sci ; 675: 139-149, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38968634

RESUMO

Transition metal selenides (TMS) have received much attention as anode materials for sodium-ion batteries (SIBs) because of their high theoretical capacity and excellent redox reversibility. However, their further development is constrained by the dissolution of transition metal ions and substantial volume changes experienced during cycling. Herein, the high-entropy Prussian blue analogues were selenized by the vapor infiltration method, resulting in the formation of a core-shell structured high-entropy selenides (HESe-6). The core-shell structure with voids and abundant selenium vacancies on the surface effectively mitigates bulk expansion and enhances electronic conductivity. Furthermore, the high-entropy property endows an ultra-stable crystal structure and inhibits the dissolution of metal ions. The ex-situ EIS and in-situ XRD results show that HESe-6 is able to be reversibly transformed into highly conductive ultrafine metal particles upon Na+ embedding, providing more Na+ reactive active sites. In addition, despite the incorporation of up to seven different elements, it exhibits minimal phase transitions during discharge/charge cycles, effectively mitigating stress accumulation. HESe-6 could retain an ultralong-term stability of 765.83 mAh g-1 after 1000 loops even at 1 A g-1. Furthermore, when coupled with the Na3V2(PO4)2O2F cathode, it maintains a satisfactory charge energy density of 303 Wh kg-1 after 300 cycles, which shows promising application prospect in the future.

5.
Anal Chim Acta ; 1316: 342867, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969430

RESUMO

BACKGROUND: Kanamycin (KAN) residues in animal-derived foods continuously enter the human body, which will pose serious threats to human health such as hearing loss, nephrotoxicity and other complications. Therefore, to sensitively detect KAN residues by a reliable technology is extremely urgent in food quality and safety. Compared with traditional methods being limited by cost and complexity, photoelectrochemical (PEC) biosensors benefit from some merits such as rapid response, excellent sensitivity and good stability. In this study, the construction of a highly efficient PEC platform to realize KAN residues detection is discussed. RESULTS: Herein, a novel p-n heterojunction consisting of flower-like BiOI microspheres and graphite carbon nitride (g-C3N4) nanoflakes was developed to establish a PEC aptasensor for KAN detection at 0 V. The prepared g-C3N4/BiOI heterostructure showed not only significantly enhanced PEC activity due to the larger specific surface area but also greatly increased charge separation efficiency owing to the strong internal electric field. Meanwhile, using g-C3N4/BiOI as a highly efficient photoactive material for binding amine-functionalized aptamers to capture KAN, the photocurrent signals showed a 'turn off' mode to achieve the sensitive detection of KAN. The proposed PEC aptasensor exhibited linear response for KAN from 5 × 10-9 to 3 × 10-7 mol L-1 with a low detection limit of 1.31 × 10-9 mol L-1, and satisfactory recoveries (97.44-107.38 %) were obtained in real food samples analysis. SIGNIFICANCE: This work presented a novel p-n heterojunction-based PEC aptasensor with strong selectivity and stability, rendering it allowed to detect KAN in animal-derived foods including milk, honey and pork. Additionally, the detection range satisfied the MRLs for KAN specified by the national standards, demonstrating the potential application for food analysis. The study provides a new insight into the development of efficient and practical biosensors for antibiotic residues detection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Grafite , Canamicina , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Grafite/química , Técnicas Biossensoriais/métodos , Canamicina/análise , Processos Fotoquímicos , Limite de Detecção , Contaminação de Alimentos/análise , Compostos de Nitrogênio/química , Animais , Nitrilas/química , Antibacterianos/análise , Bismuto
6.
J Chem Inf Model ; 64(12): 4811-4821, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38861660

RESUMO

Hepatitis C virus (HCV) is a major cause of chronic liver disease and hepatocellular carcinoma. Antibody development efforts mainly revolve around HCV envelope glycoprotein 2 (E2), which mediates host cell entry by interacting with several cell surface receptors, including CD81. We still have limited knowledge about the structural ensembles and the dynamic behavior of both the CD81 binding sites and the glycans on E2. Here, multiple microsecond-long, all-atom molecular dynamics (MD) simulations, as well as a Markov state model (MSM), were performed to provide an atomistic perspective on the dynamic nature of E2 and its glycans. End-to-end accessibility analyses outline a complete overview of the vulnerabilities of the glycan shield of E2, which may be exploited in therapeutic efforts. Additionally, the Markov state model built from the simulation maps four metastable states for AS412 and three metastable states for the front layer in CD81 binding sites, while binding with HEPC3 would induce a conformation selection for both of them. Overall, this work presents hitherto unseen functional and structural insights into E2 and its glycan coat, providing a new theoretical foundation to control the conformational plasticity of E2 that could be harnessed for vaccine development.


Assuntos
Simulação de Dinâmica Molecular , Polissacarídeos , Conformação Proteica , Proteínas do Envelope Viral , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Hepacivirus/química , Cadeias de Markov , Humanos , Sítios de Ligação
7.
Child Abuse Negl ; 154: 106873, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38850751

RESUMO

BACKGROUND: Recent studies suggest that children and adolescents are at an increased risk of experiencing violence during the COVID-19 pandemic. However, there is limited knowledge about the prevalence of violence against children and adolescents across different regions in the world. OBJECTIVE: To estimate the pooled prevalence of violence against children and adolescents during the COVID-19 pandemic and explore how geographical and methodological factors explain the variation across studies. METHODS: We conducted a systematic search of MEDLINE, Embase, and PsycInfo databases for articles published from January 1, 2020 to October 1, 2022. The study protocol was pre-registered with PROSPERO (CRD42022338181). We included published and unpublished studies available in English that reported the prevalence of violence (e.g., physical, emotional, or sexual violence, neglect, bullying) against children and adolescents (age <18 years) during the pandemic. Data extraction followed the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. A total of 2740 nonduplicate titles and abstracts were screened, and 217 full-text articles were reviewed for eligibility. RESULTS: Twenty-five studies with 66,637 participants met inclusion criteria. Based on random-effects meta-analysis, the pooled prevalence of violence against children and adolescents was 24 % (95%CI 18 %-30 %). The reported prevalence was higher in studies conducted in low- and middle-income countries compared to high-income countries. CONCLUSIONS: Over one in five children and adolescents globally reported ever experiencing violence during the COVID-19 pandemic. Our findings highlight the urgent need for effective child protection policies and interventions, as well as multisectoral collaboration, to reduce violence against children and adolescents.

8.
Nat Commun ; 15(1): 4679, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824163

RESUMO

Tungsten trioxide (WO3) has been recognized as the most promising photocatalyst for highly selective oxidation of methane (CH4) to formaldehyde (HCHO), but the origin of catalytic activity and the reaction manner remain controversial. Here, we take {001} and {110} facets dominated WO3 as the model photocatalysts. Distinctly, {001} facet can readily achieve 100% selectivity of HCHO via the active site mechanism whereas {110} facet hardly guarantees a high selectivity of HCHO along with many intermediate products via the radical way. In situ diffuse reflectance infrared Fourier transform spectroscopy, electron paramagnetic resonance and theoretical calculations confirm that the competitive chemical adsorption between CH4 and H2O and the different CH4 activation routes on WO3 surface are responsible for diverse CH4 oxidation pathways. The microscopic mechanism elucidation provides the guidance for designing high performance photocatalysts for selective CH4 oxidation.

9.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189125, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851437

RESUMO

Tertiary lymphoid structures (TLS) can reflect cancer prognosis and clinical outcomes in various tumour tissues. Tumour-associated macrophages (TAMs) are indispensable components of the tumour microenvironment and play crucial roles in tumour development and immunotherapy. TAMs are associated with TLS induction via the modulation of the T cell response, which is a major component of the TLS. Despite their important roles in cancer immunology, the subtypes of TAMs that influence TLS and their correlation with prognosis are not completely understood. Here, we provide novel insights into the role of TAMs in regulating TLS formation. Furthermore, we discuss the prognostic value of these TAM subtypes and TLS, as well as the current antitumour therapies for inducing TLS. This study highlights an entirely new field of TLS regulation that may lead to the development of an innovative perspective on immunotherapy for cancer treatment.

10.
Adv Sci (Weinh) ; : e2400790, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741381

RESUMO

Heterotopic ossification (HO), the pathological formation of bone within soft tissues such as tendon and muscle, is a notable complication resulting from severe injury. While soft tissue injury is necessary for HO development, the specific molecular pathology responsible for trauma-induced HO remains a mystery. The previous study detected abnormal autophagy function in the early stages of tendon HO. Nevertheless, it remains to be determined whether autophagy governs the process of HO generation. Here, trauma-induced tendon HO model is used to investigate the relationship between autophagy and tendon calcification. In the early stages of tenotomy, it is observed that autophagic flux is significantly impaired and that blocking autophagic flux promoted the development of more rampant calcification. Moreover, Gt(ROSA)26sor transgenic mouse model experiments disclosed lysosomal acid dysfunction as chief reason behind impaired autophagic flux. Stimulating V-ATPase activity reinstated both lysosomal acid functioning and autophagic flux, thereby reversing tendon HO. This present study demonstrates that autophagy-lysosomal dysfunction triggers HO in the stages of tendon injury, with potential therapeutic targeting implications for HO.

11.
Water Res ; 257: 121700, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705068

RESUMO

Sulfur-based denitrification is a promising technology in treatments of nitrate-contaminated wastewaters. However, due to weak bioavailability and electron-donating capability of elemental sulfur, its sulfur-to-nitrate ratio has long been low, limiting the support for dissimilatory nitrate reduction to ammonium (DNRA) process. Using a long-term sulfur-packed reactor, we demonstrate here for the first time that DNRA in sulfur-based system is not negligible, but rather contributes a remarkable 40.5 %-61.1 % of the total nitrate biotransformation for ammonium production. Through combination of kinetic experiments, electron flow analysis, 16S rRNA amplicon, and microbial network succession, we unveil a cryptic in-situ sulfur disproportionation (SDP) process which significantly facilitates DNRA via enhancing mass transfer and multiplying 86.7-210.9 % of bioavailable electrons. Metagenome assembly and single-copy gene phylogenetic analysis elucidate the abundant genomes, including uc_VadinHA17, PHOS-HE36, JALNZU01, Thiobacillus, and Rubrivivax, harboring complete genes for ammonification. Notably, a unique group of self-SDP-coupled DNRA microorganism was identified. This study unravels a previously concealed fate of DNRA, which highlights the tremendous potential for ammonium recovery and greenhouse gas mitigation. Discovery of a new coupling between nitrogen and sulfur cycles underscores great revision needs of sulfur-driven denitrification technology.


Assuntos
Compostos de Amônio , Nitratos , Nitrogênio , Enxofre , Enxofre/metabolismo , Compostos de Amônio/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Desnitrificação , Reatores Biológicos , Águas Residuárias , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
12.
Anal Chem ; 96(21): 8594-8603, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38718350

RESUMO

Solid-contact ion-selective electrodes (SC-ISEs) with ionophore-based polymer-sensitive membranes have been the major devices in wearable sweat sensors toward electrolyte analysis. However, the toxicity of ionophores in ion-selective membranes (ISMs), for example, valinomycin (K+ ion carrier), is a significant challenge, since the ISM directly contacts the skin during the tests. Herein, we report coating a hydrogel of graphene oxide-poly(vinyl alcohol) (GO-PVA) on the ISM to fabricate hydrogel-based SC-ISEs. The hydrogen bond interaction between GO sheets and PVA chains could enhance the mechanical strength through the formation of a cross-linking network. Comprehensive electrochemical tests have demonstrated that hydrogel-coated K+-SC-ISE maintains Nernstian response sensitivity, high selectivity, and anti-interference ability compared with uncoated K+-SC-ISE. A flexible hydrogel-based K+ sensing device was further fabricated with the integration of a solid-contact reference electrode, which has realized the monitoring of sweat K+ in real time. This work highlights the possibility of hydrogel coating for fabricating biocompatible wearable potentiometric sweat electrolyte sensors.

13.
PLoS One ; 19(5): e0300715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753625

RESUMO

With the onset of puberty, youth begin to choose their social environments and develop health-promoting habits, making it a vital period to study social and biological factors contextually. An important question is how pubertal development and behaviors such as physical activity and sleep may be differentially linked with youths' friendships. Cross-sectional statistical network models that account for interpersonal dependence were used to estimate associations between three measures of pubertal development and youth friendships at two large US schools drawn from the National Longitudinal Study of Adolescent to Adult Health. Whole-network models suggest that friendships are more likely between youth with similar levels of pubertal development, physical activity, and sleep. Sex-stratified models suggest that girls' friendships are more likely given a similar age at menarche. Attention to similar pubertal timing within friendship groups may offer inclusive opportunities for tailored developmental puberty education in ways that reduce stigma and improve health behaviors.


Assuntos
Comportamentos Relacionados com a Saúde , Puberdade , Humanos , Adolescente , Feminino , Puberdade/psicologia , Puberdade/fisiologia , Masculino , Estudos Transversais , Amigos/psicologia , Comportamento do Adolescente/psicologia , Estudos Longitudinais , Exercício Físico , Sono/fisiologia , Apoio Social , Rede Social
14.
Child Adolesc Psychiatry Ment Health ; 18(1): 51, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702797

RESUMO

BACKGROUND: There is a high prevalence of childhood maltreatment among Chinese children and adolescents, but little is known about its impact on alcohol and tobacco use trajectories and how positive school and neighborhood environments moderate the associations. The objective of this study was to assess the association between multiple forms of childhood maltreatment and longitudinal alcohol and tobacco use trajectories, and to assess the possibility that perceived connections to school and neighborhood moderate these associations. METHODS: This longitudinal cohort study included 2594 adolescents (9 to 13 years) from a low-income rural area in China. Childhood exposure to abuse and neglect was assessed using the Childhood Trauma Questionnaire. Participants reported past-month alcohol and tobacco use at three time points over 1 year. RESULTS: Growth curve models revealed that childhood sexual abuse was associated with a higher risk of past-month drinking (OR = 1.53, 95% CI 1.19-2.03, p < 0.001) and smoking (OR = 1.82, 95% CI 1.30-2.55, p < 0.001). Neglect was associated with a higher risk of past-month drinking (OR = 1.52, 95% CI 1.06-1.90, p < 0.05) and smoking (OR = 2.02, 95% CI 1.34-3.02, p < 0.001). None of the maltreatment forms predicted a faster increase in either drinking or smoking. These associations were found independent of personal, family, and contextual characteristics. School and neighborhood connection moderated the association between physical abuse and past-month drinking, such that physical abuse was associated with a greater risk of drinking only for youth who perceived low school or neighborhood connections. CONCLUSIONS: Findings demonstrate the importance of early experiences of childhood maltreatment for adolescent alcohol and tobacco use. Enhancing school and neighborhood connectedness for physically abused youth may help protect them from alcohol use.

15.
Food Chem ; 454: 139712, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795618

RESUMO

This work investigated structure-properties changes of reconstituted wheat A/B starch doughs under different ratios during dynamic thermal processing. Results indicated that a change in spatial conformation and aggregation structure of the starch-gluten system was induced with heating (30 °C-86 °C). Moderately increased B starch ratio can effectively fill the gluten network and improve starch-protein interactions, which promotes the free sulfhydryl group oxidation and results in the formation of more glutenin macropolymer; this contributes to a higher degree of cross-linking and stability to the gluten network matrix. This improvement is enhanced as the heating temperature is increased. Notably, the B starch ratio requires to be controlled within a suitable range (≤ 75%) to avoid aggregation and accumulation on the gluten matrix triggered by its excess. This work may provide insights and optimization for clarifying the on-demand regulation strategy of A/B starch in dough processing.


Assuntos
Farinha , Glutens , Temperatura Alta , Amido , Triticum , Amido/química , Amido/metabolismo , Glutens/química , Triticum/química , Triticum/metabolismo , Farinha/análise , Pão/análise , Manipulação de Alimentos
16.
Anal Chem ; 96(22): 9278-9284, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38768425

RESUMO

Antibody pharmaceuticals have become the most popular immunotherapeutic drugs and are often administered with low serum drug dosages. Hence, the development of a highly sensitive method for the quantitative assay of antibody levels is of great importance to individualized therapy. On the basis of the dual signal amplification by the glycan-initiated site-directed electrochemical grafting of polymer chains (glyGPC), we report herein a novel strategy for the amplified electrochemical detection of antibody pharmaceuticals. The target of interest was affinity captured by a DNA aptamer ligand, and then the glycans of antibody pharmaceuticals were decorated with the alkyl halide initiators (AHIs) via boronate cross-linking, followed by the electrochemical grafting of the ferrocenyl polymer chains from the glycans of antibody pharmaceuticals through the electrochemically controlled atom transfer radical polymerization (eATRP). As the glycans can be decorated with multiple AHIs and the grafted polymer chains are composed of tens to hundreds of electroactive tags, the glyGPC-based strategy permits the dually amplified electrochemical detection of antibody pharmaceuticals. In the presence of trastuzumab (Herceptin) as the target, the glyGPC-based strategy achieved a detection limit of 71.5 pg/mL. Moreover, the developed method is highly selective, and the results of the quantitative assay of trastuzumab levels in human serum are satisfactory. Owing to its uncomplicated operation and cost-effectiveness, the glyGPC-based strategy shows great promise in the amplified electrochemical detection of antibody pharmaceuticals.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Eletroquímicas , Trastuzumab , Técnicas Eletroquímicas/métodos , Humanos , Trastuzumab/química , Trastuzumab/sangue , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Polissacarídeos/química , Técnicas Biossensoriais/métodos , Polímeros/química
18.
Anal Bioanal Chem ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613683

RESUMO

The development of cost-effective and highly efficient electrocatalysts is critical to help electrochemical non-enzymatic sensors achieve high performance. Here, a new class of catalyst, Ru single atoms confined on Cu nanotubes as a single-atom alloy (Ru1Cu NTs), with a unique electronic structure and property, was developed to construct a novel electrochemical non-enzymatic glucose sensor for the first time. The Ru1Cu NTs with a diameter of about 24.0 nm showed a much lower oxidation potential (0.38 V) and 9.0-fold higher response (66.5 µA) current than Cu nanowires (Cu NWs, oxidation potential 0.47 V and current 7.4 µA) for glucose electrocatalysis. Moreover, as an electrochemical non-enzymatic glucose sensor, Ru1Cu NTs not only exhibited twofold higher sensitivity (54.9 µA mM-1 cm-2) and wider linear range (0.5-8 mM) than Cu NWs, but also showed a low detection limit (5.0 µM), excellent selectivity, and great stability. According to theoretical calculation results, the outstanding catalytic and sensing performance of Ru1Cu NTs could be ascribed to the upshift of the d-band center that helped promote glucose adsorption. This work presents a new avenue for developing highly active catalysts for electrochemical non-enzymatic sensors.

19.
Talanta ; 274: 125993, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579422

RESUMO

Current potentiometric Cu2+ sensors mostly rely on polymer-membrane-based solid-contact ion-selective electrodes (SC-ISEs) that constitute ion-selective membranes (ISM) and solid contact (SC) for respective ion recognition and ion-to-electron transduction. Herein, we report an ISM-free Cu2+-SC-ISE based on Cu-Mn oxide (Cu1.4Mn1.6O4) as a bifunctional SC layer. The starting point is simplifying complex multi-interfaces for Cu2+-SC-ISEs. Specifically, ion recognition and signal transduction have been achieved synchronously by an ion-coupled-electron transfer of crystal ion transport and electron transfer of Mn4+/3+ in Cu1.4Mn1.6O4. The proposed Cu1.4Mn1.6O4 electrode discloses comparable sensitivity, response time, high selectivity and stability compared with present ISM-based potentiometric Cu2+ sensors. In addition, the Cu1.4Mn1.6O4 electrode also exhibits near Nernstian responses toward Cu2+ in natural water background. This work emphasizes an ISM-free concept and presents a scheme for the development of potentiometric Cu2+ sensors.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38625459

RESUMO

There is growing support for the dual-continua model of mental health, which emphasizes psychopathology and well-being as related but distinct dimensions. Yet, little is known about how these dimensions co-develop from childhood to early adolescence and what factors predict their different trajectories. The current study aimed to identify distinct patterns of mental health in Chinese early adolescents, focusing on both psychopathological symptoms (i.e., depressive symptoms and self-harm behaviors) and subjective well-being (i.e., life satisfaction and affect balance). This study also examined the contributions of school climate and future orientation to these trajectories. A total of 1,057 students (Mage = 11.88, SDage = 1.67; 62.1% boys) completed four assessments over two years, with six-month intervals. Using parallel-process latent class growth modeling, we identified four groups: Flourishing (32.5%), Languishing (43.8%), Troubled with Stable Depressive Symptoms (16.1%), and Troubled with Increasing Self-Harm Risk (7.6%). Furthermore, school climate and future orientation contributed to adolescents' membership in these trajectories, either independently or jointly. Specifically, higher levels of future orientation combined with higher school climate were associated with a lower likelihood of belonging to the Troubled with Increasing Self-Harm Risk trajectory, compared to the Flourishing group. Our findings identified four distinct mental health trajectories consistent with the dual-continua model, and demonstrated that the development of psychopathology and well-being were not always inversely related (e.g., the Languishing group). Adolescents with unique developmental profiles may benefit from tailored intervention strategies that build on the personal and environmental assets of the adolescent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...