Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 459: 132293, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37597391

RESUMO

Microbial electron flow (MEF) is produced from microbial degradation of organic compounds. Regulating MEF to promote organic pollutants biodegradation such as naphthalene (Nap) is a potential way but remains a lack of theoretical basis. Here, we regulated MEF by adding electron acceptor NO3- to achieve 2.6 times increase of Nap biodegradation with cyclodextrin as co-metabolism carbon source. With the NO3- addition, the genes inhibited by Nap of electron generation significantly up-regulated. Especially, key genes ubiD and nahD for anaerobic Nap degradation significantly up-regulated respectively 3.7 times and 6.7 times. Moreover, the ability of electron transfer in MEF was also improved consistent with 7.2 times increase of electron transfer system (ETS) activity. Furthermore, total 60 metagenome-assembled genomes (MAGs) were reconstructed through the metagenomic sequencing data with assembly and binning strategies. Interestingly, it was also first found that the Klebsiella MAG. SDU (Shandong University) 14 had the ability of simultaneous Nap biodegradation and denitrification. Our results firstly offered an effective method of regulating MEF to promote polycyclic aromatic hydrocarbons (PAHs) degradation and simultaneous methanogenesis.


Assuntos
Elétrons , Nitratos , Humanos , Anaerobiose , Compostos Orgânicos , Naftalenos , Interações Microbianas , Oxidantes
2.
J Environ Manage ; 329: 117010, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603323

RESUMO

Phenanthrene (PHE) as a typical polycyclic aromatic hydrocarbon (PAH) is prevalent and harmful to organisms in petroleum-polluted sites. The effects of PHE concentration levels on performance, microbial community and functions in methanogenic system were comprehensively investigated by an operation of UASB reactor (198 days) and a series of batch tests. The results found that PHE was prone to accumulate in reactor by sludge adsorption (Final concentration = 12.53 mg/g TS Sludge), which posed significant influences on methanogenic system. The removal of chemical oxygen demand (COD), NH4+-N and volatile fatty acids (VFAs) in reactor were reduced with PHE accumulation. Meanwhile, microbes with higher ATPase secrete more EPS activity to self-protect against PHE toxicity. Sequencing analysis showed that PHE interfered significantly diversity and structure of microbial community. For bacteria, PHE was toxic to Bacteroidetes and Latescibacteria, while syntrophs (f_Syntrophaceae, Syntrophorhabdus, etc.) involved in VFAs oxidation and aromatic organics degradation were tolerant of PHE stress. For archaea, acetoclastic methanogens (Methanosaeta) abundance was continuously diminished by 45.1% under long-term PHE exposure. Further functions analysis suggested that microbial community accelerated amino acid metabolism, energy metabolism and xenobiotics biodegradation & metabolism to satisfy physiological demanding under PHE stress. Combining batch tests of methanogenic metabolism proved that acetoclastic methanogenesis was negatively affected by PHE due to inhibition of functional enzymes (acetate kinase, phosphate acetyltransferase, etc.) expression. These findings may provide the basis for enhancing bioremediation of PAH pollution in anaerobic environment.


Assuntos
Euryarchaeota , Hidrocarbonetos Policíclicos Aromáticos , Esgotos/química , Biodegradação Ambiental , Adsorção , Archaea/genética , Bactérias/metabolismo , Euryarchaeota/metabolismo
3.
Environ Res ; 214(Pt 4): 113991, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35961546

RESUMO

Nitrogen and phosphorus levels in livestock manure and digestive fluid are high, posing a threat to soil and water quality and necessitating nutrient removal and recovery. Phosphorus recovery has the potential to alleviate the global phosphorus resource crisis. This study proposed a magnesium anode constant voltage electrolysis method to crystallise struvite (magnesium ammonium phosphate hexahydrate, MgNH4PO4·6H2O) from anaerobically digested chicken manure slurry using reaction kinetics at variable constant voltages ranging from 2 V to 12 V. The recovery of nitrogen and phosphorus was shown to be effective over a wide initial pH range (3.00 ± 0.03-7.90 ± 0.10) using synthetic digestion fluids. Moreover, the pH gradually increased during the reaction without any external chemical adjustments. The phosphorus recovery rates conformed to the first-order kinetic model, with a maximum rate constant of 2.13 h-1. When the best voltage of 2 V was used at 25 ± 1 °C, the recovery rate reached 5.24 mg P h-1cm-2 in the synthetic digestion fluids during 90 min and 4.60 mg P h-1cm-2 in the anaerobically digested chicken manure slurry. The crystalline products recovered were identified as high-purity struvite by XRD and XPS. The purity of recovered struvite with an initial pH of 3.00 and 7.90 was 96.5% and 98.9%, respectively. These results demonstrated that the magnesium electrode could rapidly react with nitrogen and phosphorus to generate high-purity struvite.


Assuntos
Magnésio , Esterco , Animais , Galinhas , Eletrodos , Compostos de Magnésio/química , Nitrogênio , Fosfatos/química , Fósforo/química , Estruvita
4.
J Environ Manage ; 312: 114934, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35339793

RESUMO

This study evaluated the inhibitory effect and mitigation strategy of dodecyl dimethyl benzyl ammonium chloride (DDBAC) suppression on anaerobic digestion. With the 12 h-suppression, only 16.64% of anaerobes were alive, and acetotrophic methanogens were significantly inhibited. As for batch test, DDBAC suppression significantly prolonged the start-up of systems and decreased the biogas production. In cellulose semi-continuous digestion process, the DDBAC suppression induced volatile fatty acids accumulation and pH decrease. However, the biochar amended reactor effectively mitigated the DDBAC suppression and achieved 370.5 mL/d·g-chemical-oxygen-demand biogas production. Moreover, 17.8% more protein in extracellular polymeric substances was secreted as the bio-barrier to defense the DDBAC suppression. Furthermore, microbial analysis showed that biochar addition selectively enriched directed interspecies electron transfer (DIET) participant bacteria (Anaerolineaceae and Syntrophomonas) and methanogens (Methanosaeta and Methanobacterium). Meanwhile, the potential metabolic pathway analysis showed that the abundance of amino acids and energy metabolism were increased 28% and 8%, respectively. The abundance of encoding enzyme related to hydrogenotrophic and acetotrophic methanogenesis enriched 1.88 times and 1.48 times, respectively. These results showed the performance and mechanisms involved in DIET establishment with ethanol stimulation biochar addition.


Assuntos
Compostos de Amônio , Celulose , Cloreto de Amônio , Anaerobiose , Biocombustíveis , Reatores Biológicos , Carvão Vegetal , Humanos , Metano , Esgotos
5.
Environ Sci Pollut Res Int ; 29(29): 44282-44296, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35128610

RESUMO

Organic solvents like 2-pentanone and 2-hexanone which are widely used in industrial production make up a large proportion of the source of chemical pollution. What is worrisome is that the cellular and molecular toxicity of 2-pentanone and 2-hexanone has not been reported yet. Based on this, earthworms and catalase (CAT) were chosen as target receptors for the toxicity studies. The cytotoxicity of 2-pentanone and 2-hexanone was revealed by measuring the multiple intracellular indicators of oxidative stress. At the molecular level, changes in the structure and function of CAT were characterized in vitro by the spectroscopy and molecular docking. The results show that 2-pentanone and 2-hexanone that induced the accumulation of reactive oxygen species can eventually reduce coelomocytes viability, accompanying by the regular changes of antioxidant activity and lipid peroxidation level. In addition, the exposure of 2-pentanone and 2-hexanone can shrink the backbone structure of CAT, quench the fluorescence, and misfold the secondary structure. The decrease in enzyme activity should be attributed to the structural changes induced by surface binding. This study discussed the toxicological effects and mechanisms of conventional solvents at the cellular and molecular level, which creatively proposed a joint research method.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Catalase/metabolismo , Metil n-Butil Cetona/metabolismo , Metil n-Butil Cetona/farmacologia , Simulação de Acoplamento Molecular , Estresse Oxidativo , Pentanonas , Poluentes do Solo/metabolismo , Solventes/farmacologia
6.
Sci Total Environ ; 823: 153619, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35124032

RESUMO

The treatment of hypersaline oilfield wastewater (HSOW) is a challenge due to its complex composition and low biodegradability, especially in coastal areas. In this study, an HSOW treatment system of gas flotation and biochemistry technology combined with constructed wetland (CW) was investigated. The combined treatment system could efficiently remove COD, NH4+-N and oil under high salinity (1.36-2.21 × 104 mg/L), with average removal rates of 98.5%, 99.9% and 96%, respectively. Meanwhile, different salinity shaped particular community structures and functions. The abundance of Marivita, Parvibaculum, etc. was highly correlated with salinity. Co-occurrence network resulted that the microorganisms were highly interconnected, and formed a functional group of petroleum degrading. Pseudomonas, Rosevarius, Alternaria, etc. were the key genera. Moreover, functional prospected revealed that high salinity reduced the energy metabolism activity. This study will optimize the combined process and provide the basis for further extraction of high-efficiency degradation strains for HSOW enhanced treatment.


Assuntos
Poluentes Ambientais , Purificação da Água , Campos de Petróleo e Gás , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Áreas Alagadas
7.
J Hazard Mater ; 421: 126819, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34396960

RESUMO

This study investigated the dosage-effect of biochar on the suppressed mesophilic digestion of oily sludge (OS) containing naphthalene (recalcitrant compound) and starch (easily bioavailable substrate). Methanogenesis was inhibited in control with OS, where biomethane yield (63.33 mL/gVS) was obviously lower than theoretical yield (260.55 mL/gVS). With adding optimal dose of biochar (0.60 g/gVS OS), the highest CH4 yield (138.41 mL/gVS) was 2.19 times of control. Meanwhile, the efficiencies of hydrolysis, acidogenesis and acetogenesis were significantly enhanced. However, excessive biochar (4.80 g/gVS OS) caused negative effects with methanogenic efficiency diminished by 32.5% and lag phase prolonged by 5.72 h. Dissolved organic matter (DOM) analysis showed that humic acid-like and fulvic acid-like components percentages of fluorescence regional integration were decreased because of the adsorption of biochar. In addition, biochar mediating interspecies electron transfer selectively enriched electroactive fermentation bacteria (Clostridium and Bacteroides) and acetoclastic Methanosaeta, which was responsible for promoting mesophilic digestion performance. The functional genes related to metabolism and environmental information processing were potentially activated by biochar. Above results indicate that moderate biochar application may mitigate the bio-toxicity suppression of OS, which help to provide a promising pathway for reinforcing oily wastes bio-treatment.


Assuntos
Microbiota , Esgotos , Anaerobiose , Reatores Biológicos , Carvão Vegetal , Metano
8.
Water Res ; 210: 117969, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952458

RESUMO

[Bmim]FeCl4, or 1­butyl­3-methylimidazolium tetrachloroferrate, is a typical ionic liquid (IL). Its recyclable, magnetic, multicomponent, and solvent-free nature makes it a particularly attractive ionic liquid for use in industrial processes. Despite its widespread use, the potential hazards that [Bmim]FeCl4 might pose to the environment, including productive microorganisms, have not been explored. In this study, the dose-response of [Bmim]FeCl4 in anaerobic digestion (AD) was investigated to assess the potential toxification and biochar-dependent detoxification in microbial communities, including enzymatic activity and molecule docking dynamics. Our results showed that methane production (31.52 mLmax/gVS) was sharply inhibited following [Bmim]FeCl4 treatment. Moreover, increasing the dosage of [Bmim]FeCl4 caused more dissolved organic matter (DOM) to be generated. Interestingly, 0.4 g/L of [Bmim]FeCl4 could stimulate the high activity of microbial hydrolase and ATPase. However, a higher concentration of 2.65 g/L prevented these enzymatic processes from continuing. At the cellular level, higher concentration of [Bmim]FeCl4 (>0.4 g/L) increased malondialdehyde (MDA) levels, leading to a higher cell lethal rate and weakening of the secondary structures of protein (especially, the amide I region). At the molecular level, the competitive H-bonding in the active sites caused low activity and consummated more energy. At the community level, structural equation modeling (SEM) revealed that [Bmim]FeCl4 and biochar were the main drivers for microbial community succession. For instance, high [Bmim]FeCl4 (8 g/L) benefited the growth of Clostridium sensu_stricto (from ≤1% to 27%). It is worth mentioning that biochar reversed the inhibition with high α-diversity, which caused a resurgence in the activity of previously inhibited ATPase and hydrolase. H2-trophic methanogens (Methanolinea and Methaofastidisoum) were sensitive to [Bmim]FeCl4 and decreased linearly while acetoclastic methanogens (Methanosaeta) were unchanged. These findings were consistent with the short-term activity tests and further verified by functional analysis.


Assuntos
Carvão Vegetal , Matéria Orgânica Dissolvida , Anaerobiose , Cinética
9.
Environ Pollut ; 291: 118188, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34547659

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a persistent and prevalent class of pollutants in petroleum-contaminated saline environment, which pose potential harm to organisms. Researches on anaerobic biodegradation of PAHs are gradually emerging, but the response of anaerobic microorganisms to salinity changes and the co-effects of salinity and PAHs in anaerobic digestion (AD) system have seldom been reported. Thus, we investigated the variations of AD system performance and anaerobic microbial community caused by different concentrations of naphthalene (Nap) or/and NaCl based on Box-Behnken Design (0 mg/L ≤ Nap ≤150 mg/L, 0 g/L ≤ NaCl ≤25 g/L). The promoted efficiencies of acidogenesis and methanogenesis were found in presence of moderate NaCl or Nap, but high salinity (NaCl >4.4 g/L) weakened AD performance. Moreover, the high salinity (NaCl >4.4 g/L) and Nap resulted in reduced microbial Ca2+ Mg2+- ATPase activity, poor EPS secretion and the highest difference of the microbial operational taxonomic units (OTUs), and synergistically inhibited AD process. Microbiological analysis revealed that the relative abundance of Clostridium and acetoclastic Methanosaeta was increased by 2.01 times and 2.17 times in single Nap treated group compared to control. With the simultaneous addition of NaCl and Nap, Proteiniphilum and hydrogenotrophic methanogens (Methanobacterium, Methanofollis, and Methanolinea) occupied the major abundance. Potential functions prediction indicated that high salinity could disrupt the co-metabolism between carbohydrate metabolism and Nap degradation. This study provides basis for anaerobic bioremediation of PAHs-polluted saline environment.


Assuntos
Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Anaerobiose , Naftalenos , Salinidade
10.
Ecotoxicol Environ Saf ; 212: 111980, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33545408

RESUMO

This paper investigated the toxic effect and mechanism of ultrafine carbon black (UFCB) on splenocytes and enzymes in the digestive system. It was found that the toxicity of UFCB to splenocytes was dose-dependent. UFCB with a low concentration (<15 µg/mL) had no significant effect on splenocytes while UFCB with high concentration (>15 µg/mL) induced significant oxidative damage with increased content of reactive oxygen species (ROS) (134%) and malonaldehyde (MDA) (222.3%) along with the decreased activity of superoxide dismutase (SOD) (55.63%) and catalase (CAT) (87.73%). Analysis combined cellular and molecular levels indicated that UFCB induced splenocyte toxicity through oxidative stress. The interactions of UFCB with two important digestive enzymes, α-amylase and lipase, were also studied respectively. Results showed that the interaction of UFCB and the two enzymes altered the particle size and fluorescence intensity in both experimental systems. The formation of protein corona also resulted in the contraction of the polypeptide skeleton in both enzymes, which further inhibited their activity. Our work provided basic data on the toxicity of UFCB in the spleen and digestive system and fills the gap in the study of UFPs toxicity. CAPSULE: UFCB induced splenocyte toxicity and enzyme dysfunction through oxidative stress and protein corona formation respectively.


Assuntos
Fuligem/toxicidade , Baço/fisiologia , Animais , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Superóxido Dismutase/metabolismo
11.
Bioresour Technol ; 321: 124429, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33285504

RESUMO

This study aimed to investigate the synergistic effect and microbial community changes between chicken manure (CM) and cardboard (CB) during anaerobic co-digestion. Meanwhile, the energy balance of biogas engineering was extrapolated based on the batch tests. In batch tests, co-digestion system achieved the highest improvement (14.2%) and produced 319.62 mL CH4/gVS with a 65:35 ratio of CB: CM. More extracellular polymeric substance secretion promoted the electron transfer for acidogenesis and more hydrolase was provided with 31.6% improvement. The microbial analysis illustrated that higher acetoclastic Methanosaeta abundance was achieved, leading to 211% enhancement of acetoclastic pathway. Moreover, associated network illustrated that the higher methane production was mainly achieved through matching of hydrolytic bacteria and acidogenesis bacteria. As for energy balance, the synergistic effect increased the energy output by 38% and energy recovery to 46.4%.


Assuntos
Esterco , Microbiota , Anaerobiose , Animais , Biocombustíveis , Reatores Biológicos , Galinhas , Digestão , Matriz Extracelular de Substâncias Poliméricas , Metano
12.
J Mol Recognit ; 34(2): e2874, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32893930

RESUMO

Due to the rapid development of industrial society, air pollution is becoming a serious problem which has being a huge threat to human health. Ultrafine particles (UFPs), one of the major air pollutants, are often the culprits of human diseases. At present, most of the toxicological studies of UFPs focus on their biological effects on lung cells and tissues, but there are less researches taking aim at the negative effects on functional proteins within the body. Therefore, we experimentally explored the effects of ultrafine carbon black (UFCB) on the structure and function of trypsin. After a short-term exposure to UFCB, the trypsin aromatic amino acid microenvironment, protein backbone and secondary structure were changed significantly, and the enzyme activity showed a trend that rose at first, then dropped. In addition, UFCB interacts with trypsin in the form of a complex. These studies demonstrated the negative effects of UFCB on trypsin, evidencing potential effects on animals and humans.


Assuntos
Material Particulado/toxicidade , Fuligem/toxicidade , Tripsina/química , Tripsina/metabolismo , Animais , Bovinos , Dicroísmo Circular , Regulação da Expressão Gênica/efeitos dos fármacos , Modelos Moleculares , Tamanho da Partícula , Estrutura Secundária de Proteína/efeitos dos fármacos , Análise Espectral , Tripsina/efeitos dos fármacos
13.
Sci Total Environ ; 736: 139567, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32479957

RESUMO

Naphthalene, a naturally-occurring polyaromatic hydrocarbon, pose potential threats to health for its wide exposures in environment. Naphthalene could disrupt the redox equilibrium resulting in oxidative damage. Antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) are considered to be the efficient defense barriers to protect organisms from negative impacts of toxicants. Limited information is available regarding the underlying molecular mechanism between antioxidant enzymes and naphthalene. In this paper, structural and functional alterations of CAT and SOD for low dose (1.6-25.6 mg/L) naphthalene exposure have been investigated at the molecular and cellular levels. The enzyme activity responses of CAT and SOD in hepatocytes for naphthalene were consistent with the molecular, in which the activity of CAT increased and the activity of SOD slightly inhibited. Spectroscopy methods and molecular docking were carried out to investigate the underlying binding mechanisms. Naphthalene exposure significantly changed the conformation of CAT with secondary structure alteration (α-helix increase) but only changed the skeleton structure of SOD without secondary structure alteration. Naphthalene could bind to CAT and SOD primarily via H-binding force accompanied with the particle size of CAT/SOD agglomerates decreasing. Naphthalene preferentially bound to the surface of CAT and SOD. Besides, naphthalene could also bind directly to the active center of CAT with the key residues Arg364 and Tyr 357 for activity. This paper provides a combined cellular and molecular strategy to research biomarker responses for toxicants exposure. Besides, this study offers detailed basic data for the comprehensive understanding of naphthalene toxicity.


Assuntos
Antioxidantes , Superóxido Dismutase , Catalase , Simulação de Acoplamento Molecular , Naftalenos , Estresse Oxidativo
14.
J Hazard Mater ; 393: 122444, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32169814

RESUMO

Long-chain perfluoroalkyl acids (PFAAs) such as perfluorodecanoic acid (PFDA) are toxic, persistent organic pollutants. This study investigated the harmful effect of PFDA on mouse primary nephrocytes and its mechanism at cellular and molecular levels. Cellular results showed that PFDA exhibited nephrotoxicity with decreased cell viability and increased apoptosis. The increase of intracellular reactive oxygen species (ROS) content and the decrease of intracellular superoxide dismutase (SOD) activity were significant (p < 0.01) when PFDA concentration exceeded 10 µM. Additionally, the molecular results indicated that PFDA bind with Val-A98 in the surface of Cu/Zn-SOD by a 3.11 Šhydrogen bond driven by Van der Waals' force and hydrogen bonding force, which triggered the structural changes and decreased activity of Cu/Zn-SOD. Altogether, the intracellular oxidative stress is the main driver of nephrocyte apoptosis; and the interaction of PFDA and Cu/Zn-SOD exacerbated the oxidative stress in nephrocytes, which is also a nonnegligible reason of cytotoxicity induced by PDFA. This study represented a meaningful method to explore the toxic effect and mechanism of xenobiotics at cellular and molecular levels. The findings have implications for revealing the clearance of long-chain PFAAs in vivo.


Assuntos
Ácidos Decanoicos/toxicidade , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Rim/citologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
15.
Environ Sci Pollut Res Int ; 27(14): 16254-16267, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32124286

RESUMO

With the invasion of green tide, there were millions of tons of Enteromorpha prolifera (Enteromorpha) that need to be disposed of. An efficient microecological system for Enteromorpha fermentation was constructed using Saccharomyces cerevisiae (S. cerevisiae) and granular sludge at mesophilic condition (35 °C). In order to investigate the influence of S. cerevisiae dosage on fermentation, biomethane production and variations in dissolved organic matter (DOM) were investigated. The results indicated that the microecosystem with added S. cerevisiae exhibited improved fermentation capacity. Specifically, biomethane production was improved by 18%, with a maximum methane yield of 331 mL/g VS, and the time required to reach 90% methane yield was reduced by 41%. There were positive linear relationships between S. cerevisiae dosage and the efficiency of hydrolysis, acidogenesis, acetogenesis, and methanogenesis (R2 > 0.9). According to theoretical calculations, there was a positive effect of lower S. cerevisiae dosage (less than 0.93 g/g TS) on biomethane production, and excess dosage (more than 0.93 g/g TS) led to a negative effect due to volatile fatty acid (VFA) accumulation. The excitation-emission matrix (EEM) indicated that the humification index (HIX) and fulvic acid (FA) percentage of fluorescence regional integration in the system were decreased because the quinone and ketone groups of the FA accepted electrons from S. cerevisiae. These findings suggested that this microecosystem can accelerate fermentation speed (41%) and increase biomethane output (18.2%). The synergistic effect of Enteromorpha fermentation with Saccharomyces cerevisiae addition.


Assuntos
Metano , Saccharomyces cerevisiae , Reatores Biológicos , Ácidos Graxos Voláteis , Fermentação , Esgotos
16.
Sci Total Environ ; 714: 136740, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32018962

RESUMO

For both nitrogen and COD removal from biodegradable organic matter (BOM)-containing ammonium wastewater, the simultaneous partial nitritation, anammox, denitrification and COD oxidization (SNADCO) process is a promising solution. In this study, with the stable influent ammonium concentration of 250.0 mg/L (nitrogen loading rate of 0.5 kg/m3/d) and the variation of influent COD/NH4+-N (C/N) ratio from 0.0 to 1.6, the performance of the SNADCO process in a one-stage carrier-packing airlift reactor with continuous mode was investigated for the first time. The results showed that until the C/N ratio of 0.8, both the well nitrogen and COD removal targets could be reached. Mass balance calculations indicated that the average nitrogen removal efficiency (NRE) of 80.9% achieved at the C/N ratio of 0.8 were due to both the anammox and denitrification pathways. Correspondingly, the achieved average COD removal efficiency of 94.6% was attributed to both the denitrification and COD oxidization pathways. Based on the specific sludge activity tests and Fluorescence in Situ Hybridization observation, anammox and denitrification bacteria were mainly distributed in the biofilm sludge, while ammonium oxidizing bacteria and ordinary heterotrophic organisms were mainly in the suspended sludge. At the C/N ratio of 1.6, the washout of suspended sludge became serious while the biofilm sludge was well retained, resulting in inefficient nitritation and a subsequent decrease in NRE. The microbial interaction analysis provided a clear explanation of the performance change of the SNADCO process under different C/N ratios. This research enriches the knowledge of the SNADCO process in BOM-containing ammonium wastewater treatment.


Assuntos
Desnitrificação , Águas Residuárias/química , Compostos de Amônio , Reatores Biológicos , Hibridização in Situ Fluorescente , Nitrogênio , Oxirredução , Esgotos
17.
RSC Adv ; 10(64): 39171-39186, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35518443

RESUMO

Over the last 30 years, the successful implementation of the anammox process has attracted research interest from all over the world. Various reactor configurations were investigated for the anammox process. However, the construction of the anammox process is a delicate topic in regards to the high sensitivity of the biological reaction. To better understand the effects of configurations on the anammox performance, process-kinetic models and activity kinetic models were critically overviewed, respectively. A significant difference in the denitrification capabilities was observed even with similar dominated functional species of anammox with different configurations. Although the kinetic analysis gained insight into the feasibility of both batch and continuous processes, most models were often applied to match the kinetic data in an unsuitable manner. The validity assessment illustrated that the Grau second-order model and Stover-Kincannon model were the most appropriate and shareable reactor-kinetic models for different anammox configurations. This review plays an important role in the anammox process performance assessment and augmentation of the process control.

18.
Ecotoxicol Environ Saf ; 185: 109699, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31561076

RESUMO

Perfluorodecanoic acid (PFDA) has been widely used in production of many daily necessities because of its special nature. Althoughtoxic effects of PFDA to organisms have been reported, there is little research on the genotoxicity induced by oxidative stress of PFDA on the cellular and molecular levels simultaneously. Thus, we investigated the DNA oxidative damage caused by PFDA in mouse hepatocytes. On the cellular level, an increase in ROS content indicated that PFDA caused oxidative stress in mouse hepatocytes. In addition, after PFDA exposure, the comet assay confirmed DNA strand breaks and an increased 8-OHdG content demonstrated DNA oxidative damage. On the molecular level, the microenvironment of aromatic amino acids, skeleton and secondary structure of catalase (CAT) were varied after PFDA exposure and the enzyme activity was reduced because PFDA bound near the heme groups of CAT. Moreover, PFDA was shown to interact with DNA molecule by groove binding. This study suggests that PFDA can cause genotoxicity by inducing oxidative stress both on the cellular and molecular levels.


Assuntos
Dano ao DNA , Ácidos Decanoicos/toxicidade , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Hepatócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Sítios de Ligação , Catalase/química , Catalase/metabolismo , Células Cultivadas , Ensaio Cometa , DNA/química , Hepatócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo/genética , Cultura Primária de Células , Estrutura Secundária de Proteína , Espécies Reativas de Oxigênio/metabolismo
19.
Microbiome ; 7(1): 122, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462278

RESUMO

BACKGROUND: The metabolic capacities of anammox bacteria and associated microbial community interactions in partial-nitritation anammox (PNA) reactors have received considerable attention for their crucial roles in energy-efficient nitrogen removal from wastewater. However, a comprehensive understanding of how abiotic and biotic factors shape bacterial community assembly in PNA reactors is not well reported. RESULTS: Here, we used integrated multi-omics (i.e., high-throughput 16S rRNA gene, metagenomic, metatranscriptomic, and metaproteomic sequencing) to reveal how abiotic and biotic factors shape the bacterial community assembly in a lab-scale one-stage PNA reactor treating synthetic wastewater. Analysis results of amplicon sequences (16S rRNA gene) from a time-series revealed distinct relative abundance patterns of the key autotrophic bacteria, i.e., anammox bacteria and ammonia-oxidizing bacteria (AOB), and the associated heterotrophic populations in the seed sludge and the sludge at the new stable state after deterioration. Using shotgun metagenomic sequences of anammox sludge, we recovered 58 metagenome-assembled genomes (MAGs), including 3 MAGs of anammox bacteria and 3 MAGs of AOB. The integrated metagenomic, metatranscriptomic, and metaproteomic data revealed that nitrogen metabolism is the most active process in the studied PNA reactor. The abundant heterotrophs contribute to the reduction of nitrate to nitrite/ammonium for autotrophic bacteria (anammox bacteria and AOB). Genomic and transcriptomic data revealed that the preference for electron donors of the dominant heterotrophs in different bacterial assemblages (seed and new stable state) varied along with the shift in anammox bacteria that have different metabolic features in terms of EPS composition. Notably, the most abundant heterotrophic bacteria in the reactor were more auxotrophic than the less abundant heterotrophs, regarding the syntheses of amino acids and vitamins. In addition, one of the abundant bacteria observed in the bacterial community exhibited highly transcribed secretion systems (type VI). CONCLUSIONS: These findings provide the first insight that the bacterial communities in the PNA reactor are defined by not only abiotic factors (operating mode) but also metabolic interactions, such as nitrogen metabolism, exchange of electron donors, and auxotrophies.


Assuntos
Bactérias , Reatores Biológicos/microbiologia , Microbiota/genética , Nitrogênio/metabolismo , Esgotos/microbiologia , Purificação da Água/métodos , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Metagenoma , Interações Microbianas , Nitrificação , Oxirredução
20.
Bioresour Technol ; 290: 121782, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31326650

RESUMO

The effect of biochar on the thermophilic digestion of mono-cardboard was investigated. Compared with control group (T0), the maximum rate of biomethane production was significantly improved after the addition of biochar, especially, it has been improved by 40.6% in T1 (0.77 g/gTS sludge) with the methane production of 89.28 mL/gVS. Also, the addition of biochar improved the efficiency of acidogenesis and acetogenesis. However, adverse effects were observed with the biomethane production decreased by 33.98% and the lag phase extended by 35 h in T5 (3.86 g/gTS sludge). Especially, the results showed that the adsorption of biochar played important roles in digestion. In addition, acetoclastic Methanosaeta which considered to be involved in interspecific electron transfer (IET) was enriched after biochar added and the highest diversity of acetogens was obtained in T1. Oppositely, microbial networks analysis showed that the excessive biochar may destroy the diversity of microorganism drastically.


Assuntos
Reatores Biológicos , Metano , Anaerobiose , Carvão Vegetal , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...