Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38927052

RESUMO

Structure-based virtual screening utilizes molecular docking to explore and analyze ligand-macromolecule interactions, crucial for identifying and developing potential drug candidates. Although there is availability of several widely used docking programs, the accurate prediction of binding affinity and binding mode still presents challenges. In this study, we introduced a novel protocol that combines our in-house geometry optimization algorithm, the conjugate gradient with backtracking line search (CG-BS), which is capable of restraining and constraining rotatable torsional angles and other geometric parameters with a highly accurate machine learning potential, ANI-2x, renowned for its precise molecular energy predictions reassembling the wB97X/6-31G(d) model. By integrating this protocol with binding pose prediction using the Glide, we conducted additional structural optimization and potential energy prediction on 11 small molecule-macromolecule and 12 peptide-macromolecule systems. We observed that ANI-2x/CG-BS greatly improved the docking power, not only optimizing binding poses more effectively, particularly when the RMSD of the predicted binding pose by Glide exceeded around 5 Å, but also achieving a 26% higher success rate in identifying those native-like binding poses at the top rank compared to Glide docking. As for the scoring and ranking powers, ANI-2x/CG-BS demonstrated an enhanced performance in predicting and ranking hundreds or thousands of ligands over Glide docking. For example, Pearson's and Spearman's correlation coefficients remarkedly increased from 0.24 and 0.14 with Glide docking to 0.85 and 0.69, respectively, with the addition of ANI-2x/CG-BS for optimizing and ranking small molecules binding to the bacterial ribosomal aminoacyl-tRNA receptor. These results suggest that ANI-2x/CG-BS holds considerable potential for being integrated into virtual screening pipelines due to its enhanced docking performance.


Assuntos
Algoritmos , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Ligantes , Ligação Proteica , Sítios de Ligação
2.
J Chem Theory Comput ; 20(7): 2820-2829, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38502776

RESUMO

The transferability of force field parameters is a crucial aspect of high-quality force fields. Previous investigations have affirmed the transferability of electrostatic parameters derived from polarizable Gaussian multipole models (pGMs) when applied to water oligomer clusters, polypeptides across various conformations, and different sequences. In this study, we introduce PCMRESP, a novel method for electrostatic parametrization in solution, intended for the development of polarizable force fields. We utilized this method to assess the transferability of three models: a fixed charge model and two variants of pGM models. Our analysis involved testing these models on 377 small molecules and 100 tetra-peptides in five representative dielectric environments: gas, diethyl ether, dichloroethane, acetone, and water. Our findings reveal that the inclusion of atomic polarization significantly enhances transferability and the incorporation of permanent atomic dipoles, in the form of covalent bond dipoles, leads to further improvements. Moreover, our tests on dual-solvent strategies demonstrate consistent transferability for all three models, underscoring the robustness of the dual-solvent approach. In contrast, an evaluation of the traditional HF/6-31G* method indicates poor transferability for the pGM-ind and pGM-perm models, suggesting the limitations of this conventional approach.

3.
Phys Chem Chem Phys ; 26(1): 85-94, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38053433

RESUMO

Accurately predicting solvation free energy is the key to predict protein-ligand binding free energy. In addition, the partition coefficient (log P), which is an important physicochemical property that determines the distribution of a drug in vivo, can be derived directly from transfer free energies, i.e., the difference between solvation free energies (SFEs) in different solvents. Within the Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL) 9 challenge, we applied the Poisson-Boltzmann (PB) surface area (SA) approach to predict the toluene/water transfer free energy and partition coefficient (log Ptoluene/water) from SFEs. For each solute, only a single conformation automatically generated by the free software Open Babel was used. The PB calculation directly adopts our previously optimized boundary definition - a set of general AMBER force field 2 (GAFF2) atom-type based sphere radii for solute atoms. For the non-polar SA model, we newly developed the solvent-related molecular surface tension parameters γ and offset b for toluene and cyclohexane targeting experimental SFEs. This approach yielded the highest predictive accuracy in terms of root mean square error (RMSE) of 1.52 kcal mol-1 in transfer free energy for 16 small drug molecules among all 18 submissions in the SAMPL9 blind prediction challenge. The re-evaluation of the challenge set using multi-conformation strategies based on molecular dynamics (MD) simulations further reduces the prediction RMSE to 1.33 kcal mol-1. At the same time, an additional evaluation of our PBSA method on the SAMPL5 cyclohexane/water distribution coefficient (log Dcyclohexane/water) prediction revealed that our model outperformed COSMO-RS, the best submission model with RMSEPBSA = 1.88 versus RMSECOSMO-RS = 2.11 log units. Two external log Ptoluene/water and log Pcyclohexane/water datasets that contain 110 and 87 data points, respectively, are collected for extra validation and provide an in-depth insight into the error source of the PBSA method.

4.
Molecules ; 28(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38138524

RESUMO

The "Long-COVID syndrome" has posed significant challenges due to a lack of validated therapeutic options. We developed a novel multi-step virtual screening strategy to reliably identify inhibitors against 3-chymotrypsin-like protease of SARS-CoV-2 from abundant flavonoids, which represents a promising source of antiviral and immune-boosting nutrients. We identified 57 interacting residues as contributors to the protein-ligand binding pocket. Their energy interaction profiles constituted the input features for Machine Learning (ML) models. The consensus of 25 classifiers trained using various ML algorithms attained 93.9% accuracy and a 6.4% false-positive-rate. The consensus of 10 regression models for binding energy prediction also achieved a low root-mean-square error of 1.18 kcal/mol. We screened out 120 flavonoid hits first and retained 50 drug-like hits after predefined ADMET filtering to ensure bioavailability and safety profiles. Furthermore, molecular dynamics simulations prioritized nine bioactive flavonoids as promising anti-SARS-CoV-2 agents exhibiting both high structural stability (root-mean-square deviation < 5 Å for 218 ns) and low MM/PBSA binding free energy (<-6 kcal/mol). Among them, KB-2 (PubChem-CID, 14630497) and 9-O-Methylglyceofuran (PubChem-CID, 44257401) displayed excellent binding affinity and desirable pharmacokinetic capabilities. These compounds have great potential to serve as oral nutraceuticals with therapeutic and prophylactic properties as care strategies for patients with long-COVID syndrome.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Quimases , Síndrome de COVID-19 Pós-Aguda , Simulação de Dinâmica Molecular , Flavonoides/farmacologia , Aprendizado de Máquina , Inibidores de Proteases/farmacologia , Simulação de Acoplamento Molecular
5.
J Chem Inf Model ; 63(21): 6608-6618, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37899502

RESUMO

In this study, we systematically studied the energy distribution of bioactive conformations of small molecular ligands in their conformational ensembles using ANI-2X, a machine learning potential, in conjunction with one of our recently developed geometry optimization algorithms, known as a conjugate gradient with backtracking line search (CG-BS). We first evaluated the combination of these methods (ANI-2X/CG-BS) using two molecule sets. For the 231-molecule set, ab initio calculations were performed at both the ωB97X/6-31G(d) and B3LYP-D3BJ/DZVP levels for accuracy comparison, while for the 8,992-molecule set, ab initio calculations were carried out at the B3LYP-D3BJ/DZVP level. For each molecule in the two molecular sets, up to 10 conformations were generated, which diminish the influence of individual outliers on the performance evaluation. Encouraged by the performance of ANI-2x/CG-BS in these evaluations, we calculated the energy distributions using ANI-2x/CG-BS for more than 27,000 ligands in the protein data bank (PDB). Each ligand has at least one conformation bound to a biological molecule, and this ligand conformation is labeled as a bound conformation. Besides the bound conformations, up to 200 conformations were generated using OpenEye's Omega2 software (https://docs.eyesopen.com/applications/ omega/) for each conformation. We performed a statistical analysis of how the bound conformation energies are distributed in the ensembles for 17,197 PDB ligands that have their bound conformation energies within the energy ranges of the Omega2-generated conformation ensembles. We found that half of the ligands have their relative conformation energy lower than 2.91 kcal/mol for the bound conformations in comparison with the global conformations, and about 90% of the bound conformations are within 10 kcal/mol above the global conformation energies. This information is useful to guide the construction of libraries for shape-based virtual screening and to improve the docking algorithm to efficiently sample bound conformations.


Assuntos
Algoritmos , Software , Raios X , Ligantes , Conformação Molecular
6.
J Chem Inf Model ; 63(4): 1351-1361, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36786552

RESUMO

In tauopathies such as Alzheimer's disease (AD), aberrant phosphorylation causes the dissociation of tau proteins from microtubules. The dissociated tau then aggregates into sequent forms from soluble oligomers to paired helical filaments and insoluble neurofibrillary tangles (NFTs). NFTs is a hallmark of AD, while oligomers are found to be the most toxic form of the tau aggregates. Therefore, understanding tau oligomerization with regard to abnormal phosphorylation is important for the therapeutic development of AD. In this study, we investigated the impact of phosphorylated Ser289, one of the 40 aberrant phosphorylation sites of full-length tau proteins, on monomeric and dimeric structures of tau repeat R2 peptides. We carried out intensive replica exchange molecular dynamics simulation with a total simulation time of up to 0.1 ms. Our result showed that the phosphorylation significantly affected the structures of both the monomer and the dimer. For the monomer, the phosphorylation enhanced ordered-disordered structural transition and intramolecular interaction, leading to more compactness of the phosphorylated R2 compared to the wild-type one. As to the dimer, the phosphorylation increased intermolecular interaction and ß-sheet formation, which can accelerate the oligomerization of R2 peptides. This result suggests that the phosphorylation at Ser289 is likely to promote tau aggregation. We also observed a phosphorylated Ser289-Na+-phosphorylated Ser289 bridge in the phosphorylated R2 dimer, suggesting an important role of cation ions in tau aggregation. Our findings suggest that phosphorylation at Ser289 should be taken into account in the inhibitor screening of tau oligomerization.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Fosforilação , Doença de Alzheimer/metabolismo , Emaranhados Neurofibrilares/metabolismo , Peptídeos/metabolismo , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...