Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903887

RESUMO

Many aromatic plant volatile compounds contain methyleugenol, which is an attractant for insect pollination and has antibacterial, antioxidant, and other properties. The essential oil of Melaleuca bracteata leaves contains 90.46% methyleugenol, which is an ideal material for studying the biosynthetic pathway of methyleugenol. Eugenol synthase (EGS) is one of the key enzymes involved in the synthesis of methyleugenol. We recently reported two eugenol synthase genes (MbEGS1 and MbEGS2) present in M. bracteata, where MbEGS1 and MbEGS2 were mainly expressed in flowers, followed by leaves, and had the lowest expression levels in stems. In this study, the functions of MbEGS1 and MbEGS2 in the biosynthesis of methyleugenol were investigated using transient gene expression technology and virus-induced gene silencing (VIGS) technology in M. bracteata. Here, in the MbEGSs genes overexpression group, the transcription levels of the MbEGS1 gene and MbEGS2 gene were increased 13.46 times and 12.47 times, respectively, while the methyleugenol levels increased 18.68% and 16.48%. We further verified the function of the MbEGSs genes by using VIGS, as the transcript levels of the MbEGS1 and MbEGS2 genes were downregulated by 79.48% and 90.35%, respectively, and the methyleugenol content in M. bracteata decreased by 28.04% and 19.45%, respectively. The results indicated that the MbEGS1 and MbEGS2 genes were involved in the biosynthesis of methyleugenol, and the transcript levels of the MbEGS1 and MbEGS2 genes correlated with the methyleugenol content in M. bracteata.

2.
Foods ; 11(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36230009

RESUMO

Litchi (Litchi chinensis Sonn.) is susceptible to infection by Peronophythora litchi post storage, which rapidly decreases the sensory and nutritional quality of the fruit. In this study, the effects of nanosilver (Ag-NP) solution treatment on the shelf life of litchi fruit and the inhibition of P. litchi were examined, and the underlying mechanisms were discussed. For investigations, we used one variety of litchi ('Feizixiao'), dipping it in different concentrations of Ag-NP solution after harvesting. Meanwhile, we treated P. litchi with different concentrations of Ag-NP solution. According to the data analysis, litchi treated with 400 µg/mL Ag-NPs and stored at 4 °C had the highest health rate and the lowest browning index among all the samples. In the same trend, treatment with 400 µg/mL Ag-NPs produced the best results for anthocyanin content, total soluble solids content, and titratable acidity content. Additionally, according to the results of the inhibition test, 800 µg/mL Ag-NP solution had a 94.97% inhibition rate against P. litchi. Within 2-10 h following exposure to 400 µg/mL Ag-NP solution, the contents of superoxide dismutase, peroxidase, and catalase in P. litchi gradually increased and peaked, followed by a gradual decline. At this time, the integrity of the cell membrane of P. litchi could be broken by Ag-NP solution, and the sporangia showed deformed germ tubes and abnormal shapes. Taken together, these results suggested that Ag-NP treatment inhibited respiration and P. litchi activity, which might attenuate litchi pericarp browning and prolong the shelf life of litchi. Accordingly, Ag-NPs could be used as an effective antistaling agent in litchi fruit and as an ecofriendly fungicide for the post-harvest control of litchi downy blight. This study provides new insights into the application of Ag-NP as an antistaling agent for fruit storage and as an ecofriendly fungicide.

3.
Plants (Basel) ; 11(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807683

RESUMO

The mitogen-activated protein kinase (MAPK) cascade consisting of three types of reversibly major signal transduction module (MAPKKK, MAPKK, and MAPK) is distributed in eukaryotes. MAPK cascades participate in various aspects of plant development, including hormone responses, cell division and plant dormancy. Pear is one of the most economically important species worldwide, and its yield is directly affected by dormancy. In this study, genome-wide identification of MAPKK and MAPKKK gene family members in Pyrus x bretschneideri and transcriptional expression analysis of MAPK cascades during pear dormancy were performed. We identified 8 MAPKKs (PbrMKKs) and 100 MAPKKKs (PbrMAPKKKs) in Pyrus using recent genomic information. PbrMAPKKs were classified into four subgroups based on phylogenetic analysis, whereas PbrMAPKKKs were grouped into 3 subfamilies (MEKK, Raf, and ZIK). Most PbrMAPKKKs and PbrMAPKKs in the same subfamily had similar gene structures and conserved motifs. The genes were found on all 17 chromosomes. The comprehensive transcriptome analysis and quantitative real-time polymerase chain reaction (qRT-PCR) results showed that numerous MAPK cascade genes participated in pear bud dormancy. The interaction network and co-expression analyses indicated the crucial roles of the MAPK member-mediated network in pear bud dormancy. Overall, this study advances our understanding of the intricate transcriptional control of MAPKKK-MAPKK-MAPK genes and provides useful information on the functions of dormancy in perennial fruit trees.

4.
PLoS One ; 16(4): e0238873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33914776

RESUMO

Organic acids and sugars are the primary components that determine the quality and flavor of loquat fruits. In the present study, major organic acids, sugar content, enzyme activities, and the expression of related genes were analyzed during fruit development in two loquat cultivars, 'JieFangZhong' (JFZ) and 'BaiLi' (BL). Our results showed that the sugar content increased during fruit development in the two cultivars; however, the organic acid content dramatically decreased in the later stages of fruit development. The differences in organic acid and sugar content between the two cultivars primarily occured in the late stage of fruit development and the related enzymes showed dynamic changes in activies during development. Phosphoenolpyruvate carboxylase (PEPC) and mNAD malic dehydrogenase (mNAD-MDH) showed higher activities in JFZ at 95 days after flowering (DAF) than in BL. However, NADP-dependent malic enzyme (NADP-ME) activity was the lowest at 95 DAF in both JFZ and BL with BL showing higher activity compared with JFZ. At 125 DAF, the activity of fructokinase (FRK) was significantly higher in JFZ than in BL. The activity of sucrose synthase (SUSY) in the sucrose cleavage direction (SS-C) was low at early stages of fruit development and increased at 125 DAF. SS-C activity was higher in JFZ than in BL. vAI and sucrose phosphate synthase (SPS) activities were similar in the two both cultivars and increased with fruit development. RNA-sequencing was performed to determine the candidate genes for organic acid and sugar metabolism. Our results showed that the differentially expressed genes (DEGs) with the greated fold changes in the later stages of fruit development between the two cultivars were phosphoenolpyruvate carboxylase 2 (PEPC2), mNAD-malate dehydrogenase (mNAD-MDH), cytosolic NADP-ME (cyNADP-ME2), aluminum-activated malate transporter (ALMT9), subunit A of vacuolar H+-ATPase (VHA-A), vacuolar H+-PPase (VHP1), NAD-sorbitol dehydrogenase (NAD-SDH), fructokinase (FK), sucrose synthase in sucrose cleavage (SS-C), sucrose-phosphate synthase 1 (SPS1), neutral invertase (NI), and vacuolar acid invertase (vAI). The expression of 12 key DEGs was validated by quantitative reverese transcription PCR (RT-qPCR). Our findings will help understand the molecular mechanism of organic acid and sugar formation in loquat, which will aid in breeding high-quality loquat cultivars.


Assuntos
Eriobotrya/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Ácidos/metabolismo , Metabolismo dos Carboidratos , Carboidratos/genética , Eriobotrya/crescimento & desenvolvimento , Eriobotrya/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Transcriptoma
5.
Int J Mol Sci ; 20(22)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739398

RESUMO

The prominent antibacterial and quorum sensing (QS) inhibition activity of aromatic plants can be used as a novel intervention strategy for attenuating bacterial pathogenicity. In the present work, a total of 29 chemical components were identified in the essential oil (EO) of Melaleuca bracteata leaves by gas chromatography-mass spectrometry (GC-MS). The principal component was methyleugenol, followed by methyl trans-cinnamate, with relative contents of 90.46% and 4.25%, respectively. Meanwhile, the antibacterial activity and the QS inhibitory activity of M. bracteata EO were first evaluated here. Antibacterial activity assay and MIC detection against seven pathogens (Dickeya dadantii Onc5, Staphylococcus aureus ATCC25933, Pseudomonas spp., Escherichia coli ATCC25922, Serratia marcescens MG1, Pseudomonas aeruginosa PAO1 and Chromobacterium violaceum ATCC31532) demonstrated that S. aureus ATCC25933 and S. marcescens MG1 had the higher sensitivity to M. bracteata EO, while P. aeruginosa PAO1 displayed the strongest resistance to M. bracteata EO. An anti-QS (anti-quorum sensing) assay revealed that at sub-minimal inhibitory concentrations (sub-MICs), M. bracteata EO strongly interfered with the phenotype, including violacein production, biofilm biomass, and swarming motility, as well as N-hexanoyl-L-homoserine lactone (C6-HSL) production (i.e., a signaling molecule in C. violaceum ATCC31532) of C. violaceum. Detection of C6-HSL indicated that M. bracteata EO was capable of not only inhibiting C6-HSL production in C. violaceum, but also degrading the C6-HSL. Importantly, changes of exogenous C6-HSL production in C. violaceum CV026 revealed a possible interaction between M. bracteata EO and a regulatory protein (cviR). Additionally, quantitative real-time polymerase chain reaction (RT-qPCR) analysis demonstrated that the expression of QS-related genes (cviI, cviR, vioABCDE, hmsNR, lasA-B, pilE1, pilE3, and hcnB) was significantly suppressed. Conclusively, these results indicated that M. bracteata EO can act as a potential antibacterial agent and QS inhibitor (QSI) against pathogens, preventing and controlling bacterial contamination.


Assuntos
Antibacterianos/farmacologia , Melaleuca/química , Óleos Voláteis/farmacologia , Fenótipo , Folhas de Planta/química , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/química , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...