Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 59(9): 1367-71, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15857649

RESUMO

The photocatalytic oxidation of the organic pollutants with TiO(2) as photocatalyst has been widely studied in the world, and many achievements have been made. The degradation of pollutants is highly related to the photocatalytic activity of TiO(2). It is demonstrated that doping ions to TiO(2) is one way to enhance the photocatalytic activity of TiO(2). In this paper, Zn(2+)-doped TiO(2) nanoparticles were prepared through sol-gel and solid phase reaction methods, characterized by means of X-ray diffraction (XRD) and transmission electron microscopy (TEM). The photocatalytic activity of the elaborated powders was studied following the degradation of Rhodamine B. The results showed that the photocatalytic activity of Zn(2+)-doped TiO(2) prepared by sol-gel method is close to that of pure TiO(2) particles, however, the photocatalytic activity of Zn(2+)-doped TiO(2) prepared by solid phase reaction method is much higher than that of pure TiO(2) particles. The most efficient degradation of Rhodamine B was found with TiO(2) particles doped with 0.5% Zn(2+) in mole and calcined at 500 degrees C. Also the reason for the enhancement of the photocatalytic activity of TiO(2) by Zn(2+) doping through solid phase reaction method was discussed.


Assuntos
Géis/química , Nanoestruturas/química , Titânio/química , Zinco/química , Catálise , Temperatura Alta , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Fotoquímica , Rodaminas/química , Rodaminas/efeitos da radiação , Purificação da Água/métodos , Difração de Raios X
2.
Chemosphere ; 55(9): 1287-91, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15081770

RESUMO

The photocatalytic oxidation of the organic pollutants with the TiO2 as photocatalyst has been widely studied in the world, and many achievements have been got. The degradation of pollutants is highly related with the photocatalytic activity of TiO2. It is demonstrated that doping ions or oxides to TiO2 is one way to enhance the photocatalytic activity of TiO2. In this paper, the ZnFe2O4-doped TiO2 nanoparticles were prepared from butyl titanate by a sol-gel method and characterized by means of X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that when TiO2 was doped with ZnFe2O4, its particle size will decrease and its crystal structure will partly transform from anatase to rutile. The photocatalytic activity of the elaborated powders was studied following the degradation of Rhodamine B. The results showed that doping ZnFe2O4 to TiO2 will enhance the photocatalytic activity of TiO2 and that ZnFe2O4-doped TiO2 in the coexistence of anatase and rutile has higher efficiency for the degradation of Rhodamine B than that in the anatase phase alone. Also the different role of O2 in the direct photolysis and photocatalysis of Rhodamine B was discussed.


Assuntos
Compostos Ferrosos/química , Rodaminas/química , Titânio/química , Eliminação de Resíduos Líquidos/métodos , Compostos de Zinco/química , Catálise , Microscopia Eletrônica , Fotoquímica , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...