Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 85(10): 2964-2979, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35638799

RESUMO

A novel N-doped activated carbon (NAC) derived from shaddock peel was investigated to remove norfloxacin (NFX) from aqueous solution. The Box-Behnken central composite design (BBD) was used to optimize the preparation conditions of NAC. The specific surface area of NAC was 2,481.81 m2 g-1, which was obtained at 1,106 K activation temperature, 2.4 h residence time, and 2.3:1 mass ratio of KOH to hydrochar. Moreover, the equilibrium data were perfectly represented by Langmuir and Koble-Corrigan isotherms, and the adsorption process was precisely described by the pseudo-second-order kinetic model. Besides, the adsorption of NFX on NAC was mainly controlled by π-π electron-donor-acceptor (EDA) interaction, hydrophobic effect, hydrogen-bonding, electrostatic interaction and Lewis acid-base effect. The maximum monolayer adsorption capacity of NFX was 746.29 mg g-1 at 298 K, implying that NAC was a promising adsorbent for the removal of NFX from aqueous solution.


Assuntos
Norfloxacino , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Água , Poluentes Químicos da Água/química
2.
Environ Sci Pollut Res Int ; 29(32): 49346-49360, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35217960

RESUMO

In situ N-doped porous carbon (NPC) derived from wheat bran via a convenient salt sealing and air-assisted strategy was prepared for the removal of doxycycline (DOX) from aqueous solution. The NPC was precisely characterized by SEM, FTIR, XPS and BET analysis. Additionally, the experimental variables including contact time, adsorbent dosage of NPC and pH were optimized by using Box-Behnken design (BBD) under response surface methodology (RSM). The predicted adsorption capacity of DOX was found to be 291.14 mg g-1 under optimalizing experimental conditions of 196 min contact time, 0.2 g L-1 adsorbent dosage and pH 5.78. The adsorption experimental data fitted Langmuir, Koble-Corrigan and Redlich-Peterson models well, and the pseudo-second-order model perfectly described the DOX adsorption process onto NPC. Thermodynamic parameters of DOX adsorbed onto NPC indicated that the adsorption process was spontaneous and endothermic. Moreover, the adsorption of DOX on NPC was mostly controlled by electrostatic interaction, π-π electron-donator-acceptor (EDA) interaction, hydrogen-bonding and Lewis acid-base effect. Besides, the N element of NPC also played a role in capturing DOX. The maximum monolayer adsorption capacity of DOX was turn out to be 333.23 mg g-1 at 298 K, which suggested that the NPC could be a prospectively adsorbent for the removal of DOX from wastewater.


Assuntos
Carbono , Poluentes Químicos da Água , Adsorção , Fibras na Dieta , Doxiciclina , Concentração de Íons de Hidrogênio , Cinética , Porosidade , Termodinâmica , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...