Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 12: 1394388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803381

RESUMO

In droplet microfluidics, UV-Vis absorption spectroscopy along with colorimetric assays have been widely used for chemical and biochemical analysis. However, the sensitivity of the measurement can be limited by the short optical pathlength. Here we report a novel design to enhance the sensitivity by removing oil and converting the droplets into a single-phase aqueous flow, which can be measured within a U-shape channel with long optical pathlength. The flow cells were fabricated via 3D printing. The calibration results have demonstrated complete oil removal and effective optical pathlengths similar to the designed channel lengths (from 5 to 20 mm). The flow cell was further employed in a droplet microfluidic-based phosphate sensing system. The measured phosphate levels displayed excellent consistency with data obtained from traditional UV spectroscopy analysis. This flow cell design overcomes the limitations of short optical pathlengths in droplet microfluidics and has the potential to be used for in situ and continuous monitoring.

2.
Environ Sci Technol ; 58(6): 2956-2965, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38291787

RESUMO

Monitoring nutrients in the soil can provide valuable information for understanding their spatiotemporal variability and informing precise soil management. Here, we describe an autonomous in situ analyzer for the real-time monitoring of nitrate in soil. The analyzer can sample soil nitrate using either microdialysis or ultrafiltration probes placed within the soil and quantify soil nitrate using droplet microfluidics and colorimetric measurement. Compared with traditional manual sampling and lab analysis, the analyzer features low reagent consumption (96 µL per measurement), low maintenance requirement (monthly), and high measurement frequency (2 or 4 measurements per day), providing nondrifting lab-quality data with errors of less than 10% using a microdialysis probe and 2-3% for ultrafiltration. The analyzer was deployed at both the campus garden and forest for different periods of time, being able to capture changes in free nitrate levels in response to manual perturbation by the addition of nitrate standard solutions and natural perturbation by rainfall events.


Assuntos
Microfluídica , Nitratos , Nitratos/análise , Solo , Florestas
3.
Analyst ; 146(14): 4535-4544, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34137757

RESUMO

Point-of-care monitoring of chemical biomarkers in real-time holds great potential in rapid disease diagnostics and precision medicine. However, monitoring is still rare in practice, as the measurement of biomarkers often requires time consuming and labour intensive assay procedures such as enzyme linked immunosorbent assay (ELISA), which pose a challenge to an autonomous point-of-care device. This paper describes a prototype device capable of performing ELISA autonomously and repeatedly in a high frequency using droplet microfluidics. Driven by a specially designed peristaltic pump, the device can collect liquid samples from a reservoir, produce trains of droplets, complete magnetic bead based ELISA protocols and provide readouts with colourimetric measurement. Here, cortisol was chosen as a target analyte as its concentration in the human body varies on a circadian rhythm which may be perturbed by disease. The prototype device draws in and analyses 350 nL of the sample containing free bioactive cortisol every 10 seconds, with a sample-to-signal time of 10 minutes, and measures favourably in the analytical range of 3.175-100 ng ml-1, with reliably lower variability compared with the well plate based assay. As most ELISA type assays share similar procedures, we envisage that this approach could form a platform technology for measurement or even continuous monitoring of biomarkers in biological fluids at the point-of-care.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Ensaio de Imunoadsorção Enzimática , Humanos , Hidrocortisona , Sistemas Automatizados de Assistência Junto ao Leito
4.
RSC Adv ; 10(51): 30975-30981, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516030

RESUMO

Maintaining a hydrophobic channel surface is critical to ensuring long-term stable flow in droplet microfluidics. Monolithic fluoropolymer chips ensure robust and reliable droplet flow as their native fluorous surfaces naturally preferentially wet fluorocarbon oils and do not deteriorate over time. Their fabrication, however, typically requires expensive heated hydraulic presses that make them inaccessible to many laboratories. Here we describe a method for micropatterning and bonding monolithic fluoropolymer flow cells from a commercially available melt-processable fluoropolymer, Dyneon THV 500GZ, that only requires a standard laboratory oven. Using this technique, we demonstrate the formation of complex microstructures, specifically the fabrication of sensitive absorbance flow cells for probing droplets in flow, featuring path lengths up to 10 mm. The native fluorous channel surface means the flow cells can be operated over extended periods, demonstrated by running droplets continuously through a chip for 16 weeks.

5.
Environ Sci Technol ; 53(16): 9677-9685, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31352782

RESUMO

Microfluidic-based chemical sensors take laboratory analytical protocols and miniaturize them into field-deployable systems for in situ monitoring of water chemistry. Here, we present a prototype nitrate/nitrite sensor based on droplet microfluidics that in contrast to standard (continuous phase) microfluidic sensors, treats water samples as discrete droplets contained within a flow of oil. The new sensor device can quantify the concentrations of nitrate and nitrite within each droplet and provides high measurement frequency and low fluid consumption. Reagent consumption is at a rate of 2.8 mL/day when measuring every ten seconds, orders of magnitude more efficient than those of the current state-of-the-art sensors. The sensor's capabilities were demonstrated during a three-week deployment in a tidal river. The accurate and high frequency data (6% error relative to spot samples, measuring at 0.1 Hz) elucidated the influence of tidal variation, rain events, diurnal effects, and anthropogenic input on concentrations at the deployment site. This droplet microfluidic-based sensor is suitable for a wide range of applications such as monitoring of rivers, lakes, coastal waters, and industrial effluents.


Assuntos
Técnicas Analíticas Microfluídicas , Nitritos , Microfluídica , Nitratos , Óxidos de Nitrogênio , Rios
6.
Nat Commun ; 10(1): 2741, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227695

RESUMO

Knowing how biomarker levels vary within biological fluids over time can produce valuable insight into tissue physiology and pathology, and could inform personalised clinical treatment. We describe here a wearable sensor for monitoring biomolecule levels that combines continuous fluid sampling with in situ analysis using wet-chemical assays (with the specific assay interchangeable depending on the target biomolecule). The microfluidic device employs a droplet flow regime to maximise the temporal response of the device, using a screw-driven push-pull peristaltic micropump to robustly produce nanolitre-sized droplets. The fully integrated sensor is contained within a small (palm-sized) footprint, is fully autonomous, and features high measurement frequency (a measurement every few seconds) meaning deviations from steady-state levels are quickly detected. We demonstrate how the sensor can track perturbed glucose and lactate levels in dermal tissue with results in close agreement with standard off-line analysis and consistent with changes in peripheral blood levels.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Pele/química , Dispositivos Eletrônicos Vestíveis , Biomarcadores/análise , Glicemia/análise , Desenho de Equipamento , Glucose/análise , Voluntários Saudáveis , Humanos , Ácido Láctico/análise , Microdiálise/instrumentação , Microdiálise/métodos , Técnicas Analíticas Microfluídicas/métodos
7.
Biomed Microdevices ; 20(4): 92, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30370472

RESUMO

Here a micromachined flow cell with enhanced optical sensitivity is presented that allows high-throughput analysis of microdroplets. As a droplet flows through multiple concatenated measurement points, the rate of enzymatic reaction in the droplet can be fully characterized without stopping the flow. Since there is no cross-talk between the droplets, the flow cell is capable of continuously measuring biochemical assays in a droplet flow and thus is suitable to be used for continuous point-of-care diagnostics monitoring. This paper describes the design and operation of the device and its validation by application to the accurate and continuous quantification of glucose concentrations using an oxidase enzymatic assay. The flow cell forms an important component in the miniaturization of chemical and bio analyzers into portable or wearable devices.


Assuntos
Microtecnologia/instrumentação , Fenômenos Ópticos , Técnicas Biossensoriais , Glucose/análise , Limite de Detecção , Impressão Tridimensional
8.
Lab Chip ; 18(13): 1903-1913, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29877549

RESUMO

In droplet microfluidics, droplets have traditionally been considered discrete self-contained reaction chambers, however recent work has shown that dissolved solutes can transfer into the oil phase and migrate into neighbouring droplets under certain conditions. The majority of reports on such inter-droplet "crosstalk" have focused on surfactant-driven mechanisms, such as transport within micelles. While trialling a droplet-based system for quantifying nitrate in water, we encountered crosstalk driven by a very different mechanism: conversion of the analyte to a gaseous intermediate which subsequently diffused between droplets. Importantly we found that the crosstalk occurred predictably, could be experimentally quantified, and measurements rationally post-corrected. This showed that droplet microfluidic systems susceptible to crosstalk such as this can nonetheless be used for quantitative analysis.

9.
Lab Chip ; 17(6): 1149-1157, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28217768

RESUMO

Droplet microfluidics has recently emerged as a new engineering tool for biochemical analysis of small sample volumes. Droplet generation is most commonly achieved by introducing aqueous and oil phases into a T-junction or a flow focusing channel geometry. This method produces droplets that are sensitive to changes in flow conditions and fluid composition. Here, we present an alternative approach using a simple peristaltic micropump to deliver the aqueous and oil phases in antiphase pulses resulting in a robust "chopping"-like method of droplet generation. This method offers controllable droplet dynamics, with droplet volumes solely determined by the pump design, and is insensitive to liquid properties and flow rates. Importantly, sequences of droplets with controlled composition can be hardcoded into the pump, allowing chemical operations such as titrations and dilutions to be easily achieved. The push-pull pump is compact and can continuously collect samples, generating droplets close to the sampling site and with short stabilisation time. We envisage that this robust droplet generation method is highly suited for continuous in situ sampling and chemical measurement, allowing droplet microfluidics to step out of the lab and into field-deployable applications.

10.
Sci Adv ; 2(10): e1600567, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27730209

RESUMO

Although droplet-based systems are used in a wide range of technologies, opportunities for systematically customizing their interface chemistries remain relatively unexplored. This article describes a new microfluidic strategy for rapidly tailoring emulsion droplet compositions and properties. The approach uses a simple platform for screening arrays of droplet-based microfluidic devices and couples this with combinatorial selection of the droplet compositions. Through the application of genetic algorithms over multiple screening rounds, droplets with target properties can be rapidly generated. The potential of this method is demonstrated by creating droplets with enhanced stability, where this is achieved by selecting carrier fluid chemistries that promote titanium dioxide formation at the droplet interfaces. The interface is a mixture of amorphous and crystalline phases, and the resulting composite droplets are biocompatible, supporting in vitro protein expression in their interiors. This general strategy will find widespread application in advancing emulsion properties for use in chemistry, biology, materials, and medicine.


Assuntos
Materiais Biomiméticos/síntese química , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Titânio/química , Materiais Biomiméticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA