Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(43): 29783-29796, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37886855

RESUMO

In this work, two imidazolium-based ionic liquids (ILs) with different cations including dications (DIL) and monocations (MIL) were blended with poly(ethylene oxide) (PEO). The influence of ILs' structure on the structural and dynamic properties of a PEO/IL system was investigated by molecular dynamics (MD) simulation and density functional theory (DFT) methods. The simulation results show that DIL exhibits weaker interaction with PEO than MIL due to a stronger IL aggregation effect. The intermolecular interaction also makes the PEO chain tend to organize around the imidazolium ring of ILs, which causes the conformational entropy loss. Compared with PEO/MIL, this phenomenon is more significant in PEO/DIL because of the double positive centers of the dication and a longer hydrogen bond lifetime. MD simulation also demonstrates that DIL could act as a "crosslinker" to promote the formation of a physical crosslinking network which has strong dependence on the concentration of IL. The competition between physical crosslinking and plasticizing effects induces non-monotonic variations of relaxation time in PEO/DIL, which is consistent with its unusual change of the glass transition temperature (Tg). Despite stronger hydrogen bonding interactions between PEO and MIL demonstrated by atom-in-molecules (AIM) and reduced density gradient (RDG) analysis, the segmental mobility is slower in PEO/DIL according to the MSD curve. These differences in multiple structural or energetic factors finally lead to different conductive mechanisms and hence obtain different ionic conductivities.

2.
Small ; 19(27): e2300118, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37012607

RESUMO

The insufficient ionic conductivity, limited lithium-ion transference number (tLi +), and high interfacial impedance severely hinder the practical application of quasi-solid polymer electrolytes (QSPEs). Here, a sandwich-structured polyacrylonitrile (PAN) based QSPE is constructedin which MXene-SiO2 nanosheets act as a functional filler to facilitate the rapid transfer of lithium-ion in the QSPE, and a polymer and plastic crystalline electrolyte (PPCE) interface modification layer is coated on the surface of the PAN-based QSPE of 3 wt.% MXene-SiO2 (SS-PPCE/PAN-3%) to reduce interfacial impedance. Consequently, the synthesized SS-PPCE/PAN-3% QSPE delivers a promising ionic conductivity of ≈1.7 mS cm-1 at 30 °C, a satisfactory tLi + of 0.51, and a low interfacial impedance. As expected, the assembled Li symmetric battery with SS-PPCE/PAN-3% QSPE can stably cycle more than 1550 h at 0.2 mA cm-2 . The Li||LiFePO4 quasi-solid-state lithium metal battery (QSSLMB) of this QSPE exhibits a high capacity retention of 81.5% after 300 cycles at 1.0 C and at RT. Even under the high-loading cathode (LiFePO4  ≈ 10.0 mg cm-2 ) and RT, the QSSLMB achieves a superior area capacity and good cycling performance. Besides, the assembled high voltage Li||NMC811(loading ≈ 7.1 mg cm-2 ) QSSLMB has potential applications in high-energy fields.

3.
Phys Chem Chem Phys ; 24(26): 16388-16396, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35762774

RESUMO

Imidazolium ionic liquids (ILs) with various alkyl chain lengths on the cations ([Cnmim]+, n = 2, 4 and 8) and different combined anions ([TFSI]- and [PF6]-) were blended with poly(methyl methacrylate) (PMMA), and the effects of the IL structure on the chain dynamics of PMMA were experimentally investigated by rheology and DSC measurements combined with a simulation method. The results indicate that the interaction between PMMA and ILs becomes stronger as the alkyl chain length on the imidazolium ring increases or the anion changes from [PF6]- to [TFSI]-. As a result, a higher critical entanglement concentration and a larger entanglement molecular weight of PMMA were found in [C8mim][TFSI] due to the stiffer conformation. Molecular dynamics (MD) simulations further demonstrated stronger interactions between PMMA and ILs with longer cationic alkyl chain lengths or [TFSI]- anions, which showed smaller Flory-Huggins interaction parameters and larger radii of gyration, Rg. However, the larger size of alkyl chains or [TFSI]- anions produced a larger free volume in the system as evidenced by positron annihilation lifetime spectroscopy (PALS), which competed with the molecular interaction and dominated the segmental motion. Therefore, a lower Tg and accelerated segmental relaxation were observed. Compared to alkyl chain length, the effect of anions on the interactions between ILs and PMMA is more prominent.

4.
Oxid Med Cell Longev ; 2021: 9990794, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34457121

RESUMO

AIMS: This study is aimed at examining whether fatty acid synthase (FAS) can regulate mitochondrial function in hypoxia-induced pulmonary arterial hypertension (PAH) and its related mechanism. RESULTS: The expression of FAS significantly increased in the lung tissue of mice with hypoxia-induced PAH, and its pharmacological inhibition by C75 ameliorated right ventricle cardiac function as revealed by echocardiographic analysis. Based on transmission electron microscopy and Seahorse assays, the mitochondrial function of mice with hypoxia was abnormal but was partially reversed after C75 injection. In vitro studies also showed an increase in the expression of FAS in hypoxia-induced human pulmonary artery smooth muscle cells (HPASMCs), which could be attenuated by FAS shRNA as well as C75 treatment. Meanwhile, C75 treatment reversed hypoxia-induced oxidative stress and activated PI3K/AKT signaling. shRNA-mediated inhibition of FAS reduced its expression and oxidative stress levels and improved mitochondrial respiratory capacity and ATP levels of hypoxia-induced HPASMCs. CONCLUSIONS: Inhibition of FAS plays a crucial role in shielding mice from hypoxia-induced PAH, which was partially achieved through the activation of PI3K/AKT signaling, indicating that the inhibition of FAS may provide a potential future direction for reversing PAH in humans.


Assuntos
4-Butirolactona/análogos & derivados , Metabolismo Energético , Ácido Graxo Sintases/antagonistas & inibidores , Hipóxia/complicações , Mitocôndrias/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Hipertensão Arterial Pulmonar/tratamento farmacológico , 4-Butirolactona/farmacologia , Animais , Apoptose , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipertensão Arterial Pulmonar/enzimologia , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Arterial Pulmonar/patologia , Transdução de Sinais
5.
RSC Adv ; 11(63): 39813-39820, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-35494141

RESUMO

The deformation mechanism and phase transition behavior of polytetrafluoroethylene (PTFE) under stretching conditions (25, 50, 100 °C) were investigated by using differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), and X-ray diffraction (XRD). Compared to the unstretched PTFE samples, stretching at all temperatures results in a reduced phase transition temperature (IV-I and II-IV). Above a critical strain ε H,c (∼0.6), the decrease of phase transition temperature becomes more significant with the increasing strain. At higher stretching temperature, the value of the ε H,c becomes smaller. By separating the recoverable (ε H,r) and irreversible (ε H,i) deformation, a similar ε H,c (∼0.6) is found, beyond which the recoverable part remains basically unchanged while the unrecoverable part increases sharply. It is considered that as the strain reaches 0.6, both the untwisting of molecular chain and destroy of the crystal structure could occur, which leads to the increased plastic deformation of the system. Upon the strain is beyond 0.9, the degree of chain untwisting reaches the maximum, and a stable oriented fiber network structure forms, showing the phenomenon of elasticity enhancement. The deformation mechanism of PTFE changes from lamella slip at small strain to stretching induced formation of stable fibrils as evidenced by SEM and SAXS.

6.
ACS Appl Mater Interfaces ; 12(52): 58201-58211, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33332963

RESUMO

The success of next-generation lithium-ion batteries (LIBs) fundamentally depends on the rational design of not only the microstructure of an individual component but the component assembling structures on the electrode level. However, building advanced assembling structures for especially high-capacity electrodes is an urgent but a challenging task due to the lacking of in-depth understanding and effective strategies. Here, we propose a functional nanocoating biobinder using the well-known poly(lactic acid) to address the above need. It is found that the composite electrodes with this nanocoating biobinder are upgraded with uniform and robust assembling structures, including the electron-transportation network, ion-transportation network, and interfaces. Importantly, the nanocoating finally works as a new type of polymeric artificial cathode electrolyte interphase (poly-CEI) to protect the active particles. Therefore, a remarkable improvement in the electrochemical performance has been achieved for high-capacity electrodes (LiFePO4, lithium nickel cobalt manganite (NCM), and lithium nickel cobalt aluminum acid (NCA)). In particular, the LFP cathode can deliver a high discharge capacity of 74.6 mA h g-1 at 10C and a high capacity retention of 95.5% even after 850 cycles at 2C. For NCA and NCM cathodes, the cycling stability is dramatically improved due to the protection by the poly-CEI. In short, this study may reshape the essential roles of a binder in composite electrodes by highlighting its critical link to assembling structures.

7.
Macromol Rapid Commun ; 38(23)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28895240

RESUMO

The irreversible and reversible phase transition behaviors during phase separation-recovery (heating-cooling) cycles for poly(ethylene oxide)/1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid (PEO/[EMIM][BF4 ]) mixtures with a lower critical solution temperature phase diagram are reported for the first time. The evident differential scanning calorimetry endothermic and exothermic peaks are observed during the heating-cooling scan cycles near the phase boundary, in which the large heat loss for samples below the critical composition (60 wt% PEO) and obvious downward shift of phase transition temperature for all the compositions between the first and second cycles are particularly attractive. After the first recovery process, a reversible behavior during the next cycles is expected. These interesting phenomena are further confirmed by optical microscopy and Fourier-transform infrared measurements. It is demonstrated that the disruption and partial recovery of the hydrogen bonds, combined with the conformational change of PEO chains, can contribute to this irreversible behavior as well as a conversion to reversible phase transition behavior.


Assuntos
Líquidos Iônicos/química , Varredura Diferencial de Calorimetria , Temperatura Alta , Transição de Fase , Polietilenoglicóis/química , Temperatura
8.
Soft Matter ; 12(36): 7613-23, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27546439

RESUMO

The phase separation behavior of poly(ethylene oxide) (PEO) in ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) was investigated by rheological, optical microscopy, FT-IR and DSC measurements. It is demonstrated that specific interactions, particularly the hydrogen bonding between PEO and the ionic liquids as evidenced by FT-IR, in which a subtle but apparent absorption peak shift near the phase transition appears, account for the unusual low critical solution temperature (LCST) phase separation. Unlike the typical trend in which the storage modulus G' simply increases with temperature near the phase boundary for polymer blends without specific interaction, in our study, a novel "V-shaped" rheological response is observed, namely a dip in G' followed by an upturn, especially at low PEO concentration (<50 wt%). The magnitude of the "V" dip has heating rate and frequency dependences, while Tr (the phase transition temperature) is almost unchanged with heating rate and frequency. Upon increasing the alkyl chain length on the imidazolium ring from an ethyl to a butyl, the "V-shape" becomes more prominent and shifts to higher temperature, which is consistent with the results of FT-IR and DSC, evidently due to the stronger hydrogen bonding interaction between PEO and [BMIM][BF4] than [EMIM][BF4]. This unusual "V" dip might be tentatively ascribed to the coupling effects of the breaking of the "hydrogen bonding cage" formed between PEO chains and IL molecules and dissolution of the heterogeneous clusters as verified by FT-IR and TEM, respectively, and the following upturn is dominated by the interface formation upon phase separation.

9.
ACS Appl Mater Interfaces ; 4(12): 6468-78, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23173546

RESUMO

Thermal annealing-induced enhancements of electrical conductivities at the temperature higher than the melting point of poly(ethylene-co-hexene) matrix for multiwalled carbon nanotubes filled poly(ethylene-co-hexene) (MWCNTs/PEH) composites were investigated by electrical conductivity measurements. Two types of MWCNTs with low and high aspect ratios (4 and 31) were added as fillers into PEH matrix, respectively for comparison study purpose. The morphological changes due to annealing for MWCNTs/PEH composites were observed by SEM. The formation of MWCNT networks in the composites were clearly demonstrated by rheological measurements. It is surprisingly found that the electrical conductivity for MWCNTs/PEH composites with high MWCNT concentrations increases obviously with annealing time of 40 min and the maximum increment approaches about 3 orders of magnitude with annealing time of 120 min. The increase of electrical conductivity of MWCNTs/PEH composites depends on MWCNT content, MWCNT aspect ratio and annealing time. SEM results clearly reveal that micrometer-sized MWCNT aggregates are broken down and more loosely packed MWCNT networks form due to annealing. Different types of networks in the composites are responsible for the evolutions of rheological (MWCNT network and PEH chain-MWCNT combined network) and electrical conductivity properties (tube-tube contacting MWCNT network). The reconstruction of MWCNT network during annealing is attributed to rotational diffusion of MWCNTs in PEH matrix at high temperature and the length of MWCNTs shows significant effect on this. The obvious enhancements of electrical conductivities can be ascribed to the thermal annealing-induced formation of loosely packed more homogeneous networks through non-Brownian motions.

10.
J Phys Chem B ; 116(1): 147-53, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22148751

RESUMO

Time-resolved simultaneous synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) technique was used to investigate the phase transitions in prequenched mesomorphic isotactic polypropylene (iPP) samples during heating and annealing processes, respectively. For the heating process, it is shown that the mesomorphic-to-monoclinic phase transition is relatively faster for the mesomorphic iPP sample obtained with the high quenching rate than that with the low quenching rate. For the former, the stability of α-monoclinic crystals formed during heating is relatively higher. As for the annealing process, WAXD and SAXS data illustrate that the higher the annealing temperature (T(a)), the earlier the mesomorphic-to-monoclinic phase transition occurs. Namely, T(a) controls the phase transition rate. Both heating and annealing processes show that the increase of content of α-monoclinic crystal phase is mainly at the expense of the mesomorphic phase, with the content of amorphous phase almost invariable. The isothermal crystallization kinetics for the prequenched mesomorphic iPP sample was analyzed through the Avrami equation, revealing a two-dimensional crystal growth under the diffusion-limited mechanism.

11.
ACS Appl Mater Interfaces ; 3(9): 3744-53, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21859160

RESUMO

Biodegradable polylactide (PLA) composites added with acid oxidized multiwalled carbon nanotubes (A-MWCNTs) of two different aspect ratios (length to diameter) were prepared by coagulation. The aspect ratios and surface structures of A-MWCNTs were characterized by TGA, Raman, and SEM measurements. The percolation thresholds for gelation in the PLA composites with A-MWCNTs of large and small aspect ratios are 2.5 and 4.0 wt %, respectively, which were determined by a rheological method, and in turn, the rheological result confirms the aspect ratio differences for the added two types of A-MWCNTs in the composites. Isothermal crystallization kinetics of neat PLA and its composites were further investigated by using polarized optical microscope (POM) and differential scanning calorimetry (DSC) to clarify the effects of A-MWCNTs of different aspect ratios and concentrations. The different aspect ratio A-MWCNTs with the same carboxyl group mass percent show substantial effects on PLA crystallization kinetics. Those with smaller aspect ratios enhance nucleation rate for PLA spherulites much more than those with larger aspect ratios. This phenomenon can be attributed to fewer sidewall carboxyl groups on the surfaces of A-MWCNTs with smaller aspect ratios, which provides more nucleation sites for PLA crystallization than those with larger aspect ratios at the same concentration, resulting in faster PLA nucleation rates for the former one.


Assuntos
Nanotubos de Carbono/química , Poliésteres/química , Varredura Diferencial de Calorimetria , Cristalização , Nanotubos de Carbono/ultraestrutura , Oxirredução , Análise Espectral Raman , Propriedades de Superfície , Termogravimetria
12.
Biomacromolecules ; 12(4): 1087-96, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21361275

RESUMO

Liquid crystalline (LC) phase transition and gel-sol transition in the solutions of microcrystalline cellulose (MCC) and ionic liquid (1-ethyl-3-methylimidazolium acetate, EMIMAc) have been investigated through a combination of polarized optical microscope (POM) observation and rheological measurements. Molecular LC phase forms at the 10 wt % cellulose concentration, as observed by POM, whereas the critical gel point is 12.5 wt % by rheological measurements according to the Winter and Chambon theory, for which the loss tangent, tan δ, shows frequency independence. Dramatic decreases of G' and G'' in the phase transition temperature range during temperature sweep are observed due to disassembling of the LC domain junctions. The phase diagram describing the LC phase and gel-sol transitions is obtained and the associated mechanisms are elucidated. A significant feature shown in the phase diagram is the presence of a narrow lyotropic LC solution region, which potentially has a great importance for the cellulose fiber wet spinning.


Assuntos
Celulose/química , Imidazóis/química , Acetatos/química , Cristalização , Microscopia Eletrônica de Transmissão , Espalhamento de Radiação , Soluções
13.
J Phys Chem B ; 114(18): 6006-13, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20405880

RESUMO

The phase transition and rheological behaviors of concentrated solutions of microcrystalline cellulose (MCC) in an ionic liquid of 1-allyl-3-methylimidazolium chloride (AMIMCl) have been investigated. Polarized optical microscopy (POM) measurements indicate that the two critical cellulose concentrations for the appearance of biphase and fully anisotropic phase for MCC/AMIMCl solutions are 9 and 16 wt%, respectively. POM and differential scanning calorimetry (DSC) measurements coherently indicate that the clearing temperature, T(c) increases with increasing cellulose concentration. Oscillatory shear measurements show that the crossover frequency first moves to lower values and then moves back to higher values with increasing cellulose concentration, which indicates that most cellulose chains are aligned or oriented to reduce chain entanglements when the cellulose concentration is above 14 wt%. From the steady shear measurements, it is surprising to find that the viscosity versus shear rate curves exhibit four flow regions including two plateaus and two shear-thinning regions when the cellulose concentration exceeds 9 wt%. The influences of cellulose concentration and temperature on the first normal stress differences (N(1)) are analyzed according to the Larson theory. The peak of N(1) always appears at the intermediate part of the first shear-thinning region, and the following minimum of N(1) appears at the onset of the second shear-thinning region. The viscosity versus shear rate curves only exhibit two flow regions when temperature is above the respective T(c); meanwhile, negative N(1) values disappear and N(1) increases monotonically. The above results suggest that melting of the liquid crystal domains at high temperature results in the disappearance of the second plateau for the viscosity versus shear rate curves.

14.
J Phys Chem B ; 113(26): 8820-7, 2009 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-19552454

RESUMO

Phase separation kinetics of polyethylene copolymer blends polyethylene-co-hexene (PEH)/polyethylene-co-butene (PEB) at a phase separation temperature of 130 degrees C have been investigated through the combination of rheological measurements and optical microscope observation. When the blends are located in the unstable region, i.e., PEH/PEB 40/60 blend (H40), 50/50 blend (H50), and 60/40 blend (H60), due to the coeffect of the fast decay of concentration fluctuations and the reduced interfacial area, the stroage modulus, G', behaves dramatically, decreasing at the early or intermediate stages; while when the blends are located in the metastable region, i.e., PEH/PEB 70/30 blend (H70), G' decreases slightly and slowly during the whole time sweep process. During the cyclic frequency sweeps, G' evolutions of H50 and H70 show similar trends. Obviously different from the strong phase segregation systems, the increase of G' with time in the metastable region has not been observed, possibly due to the entanglement effects and weak interaction between the components of polyethylene blends. The interfacial tension-driven or diffusion-limited morphological evolutions of H50 and H70 during phase separation give direct interpretations to the viscoelastic difference between the two blends, which is dominated by different phase separation kinetics. The relatively low interfacial tensions at the late stage of phase separation for H50 (0.5-0.38 mN/m varying with time) and H70 (1.2 mN/m) can be estimated by using the Gramespacher-Meissner model.

15.
J Phys Chem B ; 112(33): 10234-40, 2008 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-18661932

RESUMO

The ionic liquid of 1-allyl-3-methylimidazolium chloride ([amim]Cl) was used as the good solvent to dissolve celluloses. Cellulose concentration covers the range of 0.1-3.0 wt %, spanning both the dilute and semidilute regimes. The rheological properties of the cellulose ionic liquid solutions have been investigated by steady shear and oscillatory shear measurements in this study. In the steady shear measurements, all the cellulose solutions show a shear thinning behavior at high shear rates; however, the dilute cellulose solutions show another shear thinning region at low shear rates, which may reflect the characteristics of the [amim]Cl solvent. In the oscillatory shear measurements, for the dilute regime, the reduced dimensionless moduli are obtained by extrapolation of the viscoelastic measurements for the dilute solutions to infinite dilution. The frequency dependences of the reduced dimensionless moduli are intermediate between the predictions from the Zimm model and elongated rodlike model theories, while the fitting by using a hybrid model combining these two model theories agrees well with the experimental results. For the semidilute regime, the frequency dependences of moduli change from the Zimm-like behavior to the Rouse-like behavior with increasing cellulose concentration. In the studied concentration range, the effects of molecular weight and temperature on solution viscoelasticities and the relationship between steady shear viscosity and dynamic shear viscosity are presented. Results show that the solution viscoelasticity greatly depends on the molecular weight of cellulose; the empirical time-temperature superposition principle holds true at the experimental temperatures, while the Cox-Merz rule fails for the solutions investigated in this study.


Assuntos
Celulose/química , Íons , Reologia/métodos , Físico-Química/métodos , Elasticidade , Líquidos Iônicos , Modelos Estatísticos , Polímeros/química , Soluções , Temperatura , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...