Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Eng Mater ; 2(2): 305-312, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38419977

RESUMO

In this paper, we report the H2S adsorption behavior of a sorbent composed of mixtures of tenorite (CuO) and brochantite [Cu4(OH)6SO4]. These materials are readily prepared through the addition of NaOH(aq) to CuSO4(aq). They can be loaded onto polymer foams to create effective filters that can remove malodorous H2S gas, as evidenced by breakthrough tests. X-ray diffraction shows that the ratio of the two compounds in the mixture can be finely tuned by varying the amount of NaOH(aq) that is added to the reaction mixture. X-ray photoelectron spectroscopy shows that brochantite, like tenorite, has the ability to chemically adsorb H2S. Correlation of the H2S breakthrough data with scanning transmission electron microscopy measurements shows that the most effective sorbents contain nanoscale needle-like particles. These are likely to be formed largely by the tenorite phase. The samples with the greatest H2S adsorption efficacy contained less than 20% tenorite in the mixture, where these particles had the greatest abundance. The application of this sorbent onto porous substrates to create effective filters, along with the synthetic ease of its production, could allow this methodology to find use in a number of areas where H2S poses a problem. This could include areas where protective clothing is required to adsorb the gas from environments where there is a high level of H2S, for example, in wastewater treatment plants, oil and gas wells, or in the medical sector, where it could be deployed as filter media.

2.
Nanoscale ; 15(47): 19091-19098, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37929917

RESUMO

Direct atomic scale information on how the structure of supported nanoparticles is affected by the metal-support interaction is rare. Using scanning transmission electron microscopy, we provide direct evidence of a facet-dependent support interaction for Pt nanoparticles on CeO2, governing the dimensionality of small platinum particles. Our findings indicate that particles consisting of less than ∼130 atoms prefer a 3D shape on CeO2(111) facets, while 2D raft structures are favored on CeO2(100) facets. Measurements of stationary particles on both surface facets are supplemented by time resolved measurements following a single particle with atomic resolution as it migrates from CeO2(111) to CeO2(100), undergoing a dimensionality change from 3D to 2D. The intricate transformation mechanism reveals how the 3D particle disassembles and completely wets a neighboring CeO2(100) facet. Density functional theory calculations confirm the structure-trend and reveal the thermodynamic driving force for the migration of small particles. Knowledge of the presented metal-support interactions is crucial to establish structure-function relationships in a range of applications based on supported nanostructures.

3.
Nano Lett ; 23(15): 7236-7243, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37326318

RESUMO

Plasmonic metasurfaces have been realized for efficient light absorption, thereby leading to photothermal conversion through nonradiative decay of plasmonic modes. However, current plasmonic metasurfaces suffer from inaccessible spectral ranges, costly and time-consuming nanolithographic top-down techniques for fabrication, and difficulty of scale-up. Here, we demonstrate a new type of disordered metasurface created by densely packing plasmonic nanoclusters of ultrasmall size on a planar optical cavity. The system either operates as a broadband absorber or offers a reconfigurable absorption band right across the visible region, resulting in continuous wavelength-tunable photothermal conversion. We further present a method to measure the temperature of plasmonic metasurfaces via surface-enhanced Raman spectroscopy (SERS), by incorporating single-walled carbon nanotubes (SWCNTs) as an SERS probe within the metasurfaces. Our disordered plasmonic system, generated by a bottom-up process, offers excellent performance and compatibility with efficient photothermal conversion. Moreover, it also provides a novel platform for various hot-electron and energy-harvesting functionalities.

4.
Chemosphere ; 295: 133889, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35131272

RESUMO

Raman spectroscopy has been commonly used in materials science to detect chemicals. Based on inelastic scattering of light after incident photons interact with a molecule, it has high potential for non-destructive detection of specific contaminants in living biological specimens. The increasing use of carbon nanotubes (CNTs) increases its chance to enter the aquatic habitats through direct discharge, surface runoff and atmospheric deposition, but their potential environmental impacts remain poorly known. We tested the use of Raman spectroscopy to investigate the interactions between multi-walled CNTs (MWCNTs) and aquatic plankton in vivo. For phytoplankton cells (Scenedesmus obliquus) that were exposed to MWCNTs, Raman spectroscopy was able to distinguish between background biological material and MWCNTs that adhere to the cells (G-band peak at 1590 cm-1 and D-band peak at 1350 cm-1 in the Raman spectra that were unique to MWCNTs). Harmful effects of MWCNT exposure manifested as lower photosynthetic efficiency and/or lower specific growth rate in the phytoplankton. MWCNT particles also adhered to the body surface of zooplankton, especially the carapace. Both Ceriodaphnia sp. and Daphnia sp. ingested MWCNTs directly, which was verified by the signature G-band and D-band Raman peaks in the zooplankton gut region. MWCNTs remained in the gut overnight after the zooplankton had been returned to clean water, showing that the zooplankton retained MWCNTs inside their body for an extended time, thereby increasing the chance to disperse and transfer the contaminants throughout the aquatic food web. Our results demonstrate that Raman spectroscopy is a promising method for non-destructive investigation of the uptake and dynamic fate of CNTs and other contaminants in aquatic organisms.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Animais , Daphnia , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Plâncton , Análise Espectral Raman , Poluentes Químicos da Água/química
5.
Adv Mater ; 33(23): e2007623, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33929067

RESUMO

Materials show various responses to incident light, owing to their unique dielectric functions. A well-known example is the distinct colors displayed by metals, providing probably the simplest method to identify gold, silver, and bronze since ancient times. With the advancement of nanotechnology, optical structures with feature sizes smaller than the optical wavelength have been routinely achieved. In this regime, the optical response is also determined by the geometry of the nanostructures, inspiring flourishing progress in plasmonics, photonic crystals, and metamaterials. Nevertheless, the nature of the materials still plays a decisive role in light-matter interactions, and this material-dependent optical response is widely accepted as a norm in nanophotonics. Here, a counterintuitive system-plasmonic nanostructures composed of different materials but exhibiting almost identical reflection-is proposed and realized. The geometric disorder embedded in the system overwhelms the contribution of the material properties to the electrodynamics. Both numerical simulations and experimental results provide concrete evidence of the insensitivity of the optical response to different plasmonic materials. The same optical response is preserved with various materials, providing great flexibility of freedom in material selection. As a result, the proposed configuration may shed light on novel applications ranging from Raman spectroscopy, photocatalysis, to nonlinear optics.

6.
Nanomaterials (Basel) ; 12(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35009958

RESUMO

For every three people on the planet, there are approximately two Tonnes (Te) of plastic waste. We show that carbon recovery from polystyrene (PS) plastic is enhanced by the coaddition of solvents to grow carbon nanotubes (CNTs) by liquid injection chemical vapour deposition. Polystyrene was loaded up to 4 wt% in toluene and heated to 780 °C in the presence of a ferrocene catalyst and a hydrogen/argon carrier gas at a 1:19 ratio. High resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Raman spectroscopy were used to identify multiwalled carbon nanotubes (MWCNTs). The PS addition in the range from 0 to 4 wt% showed improved quality and CNT homogeneity; Raman "Graphitic/Defective" (G/D) values increased from 1.9 to 2.3; mean CNT diameters increased from 43.0 to 49.2 nm; and maximum CNT yield increased from 11.37% to 14.31%. Since both the CNT diameters and the percentage yield increased following the addition of polystyrene, we conclude that carbon from PS contributes to the carbon within the MWCNTs. The electrical contact resistance of acid-washed Bucky papers produced from each loading ranged from 2.2 to 4.4 Ohm, with no direct correlation to PS loading. Due to this narrow range, materials with different loadings were mixed to create the six wires of an Ethernet cable and tested using iPerf3; the cable achieved up- and down- link speeds of ~99.5 Mbps, i.e., comparable to Cu wire with the same dimensions (~99.5 Mbps). The lifecycle assessment (LCA) of CNT wire production was compared to copper wire production for a use case in a Boeing 747-400 over the lifespan of the aircraft. Due to their lightweight nature, the CNT wires decreased the CO2 footprint by 21 kTonnes (kTe) over the aircraft's lifespan.

7.
Philos Trans A Math Phys Eng Sci ; 378(2176): 20200057, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32623991

RESUMO

A sol-immobilization method is used to synthesize a series of highly active and stable AuxPd1-x/TiO2 catalysts (where x = 0, 0.13, 0.25, 0.5, 0.75, 0.87 and 1) for wastewater remediation. The catalytic performance of the materials was evaluated for the catalytic reduction of 4-nitrophenol, a model wastewater contaminant, using NaBH4 as the reducing agent under mild reaction conditions. Reaction parameters such as substrate/metal and substrate/reducing agent molar ratios, reaction temperature and stirring rate were investigated. Structure-activity correlations were studied using a number of complementary techniques including X-ray powder diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. The sol-immobilization route provides very small Au-Pd alloyed nanoparticles, with the highest catalytic performance shown by the Au0.5Pd0.5/TiO2 catalyst. This article is part of a discussion meeting issue 'Science to enable the circular economy'.

8.
Nanoscale ; 10(5): 2363-2370, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29328339

RESUMO

Au nanoparticles represent the most remarkable example of a size effect in heterogeneous catalysis. However, a major issue hindering the use of Au nanoparticles in technological applications is their rapid sintering. We explore the potential of stabilizing Au nanoclusters on SiO2 by alloying them with a reactive metal, Ti. Mass-selected Au/Ti clusters (400 000 amu) and Au2057 clusters (405 229 amu) were produced with a magnetron sputtering, gas condensation cluster beam source in conjunction with a lateral time-of-flight mass filter, deposited onto a silica support and characterised by XPS and LEIS. The sintering dynamics of mass-selected Au and Au/Ti alloy nanoclusters were investigated in real space and real time with atomic resolution aberration-corrected HAADF-STEM imaging, supported by model DFT calculations. A strong anchoring effect was revealed in the case of the Au/Ti clusters, because of a much increased local interaction with the support (by a factor 5 in the simulations), which strongly inhibits sintering, especially when the clusters are more than ∼0.60 nm apart. Heating the clusters at 100 °C for 1 h in a mixture of O2 and CO, to simulate CO oxidation conditions, led to some segregation in the Au/Ti clusters, but in line with the model computational investigation, Au atoms were still present on the surface. Thus size-selected, deposited nanoalloy Au/Ti clusters appear to be promising candidates for sustainable gold-based nanocatalysis.

9.
ACS Catal ; 6(9): 6008-6017, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27818842

RESUMO

This report focuses on a novel strategy for the preparation of transition metal-MoS2 hybrid nanoclusters based on a one-step, dual-target magnetron sputtering, and gas condensation process demonstrated for Ni-MoS2. Aberration-corrected STEM images coupled with EDX analysis confirms the presence of Ni and MoS2 in the hybrid nanoclusters (average diameter = 5.0 nm, Mo:S ratio = 1:1.8 ± 0.1). The Ni-MoS2 nanoclusters display a 100 mV shift in the hydrogen evolution reaction (HER) onset potential and an almost 3-fold increase in exchange current density compared with the undoped MoS2 nanoclusters, the latter effect in agreement with reported DFT calculations. This activity is only reached after air exposure of the Ni-MoS2 hybrid nanoclusters, suggested by XPS measurements to originate from a Ni dopant atoms oxidation state conversion from metallic to 2+ characteristic of the NiO species active to the HER. Anodic stripping voltammetry (ASV) experiments on the Ni-MoS2 hybrid nanoclusters confirm the presence of Ni-doped edge sites and reveal distinctive electrochemical features associated with both doped Mo-edge and doped S-edge sites which correlate with both their thermodynamic stability and relative abundance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...