Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 21343, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266590

RESUMO

The frequent occurrence of extreme climate events disrupts the regional water budget balance and leads to changes in the dry and wet conditions of the surface, making the water surplus and deficit more complex and variable. To explore the quantitative relationship between the spatiotemporal evolution of dry and wet conditions and meteorological factors in the Hexi Corridor under changing environmental conditions, the relative moisture index (MI) and FAO Penman-Monteith (FAO P-M) model were combined to construct a partial differential quantitative attribution model for dry and wet variations affected by climate factors in the Hexi Corridor. The results show that: (1) MI in the Hexi Corridor increased significantly (Z = 2.341) during 1960-2019, showing a wet-trend change, and the degree of drought increased from southeast to northwest in the Hexi Corridor. (2) The order of drought degree in four seasons is as follows: winter (- 0.95), spring (- 0.93), autumn (- 0.89) and summer (- 0.83). (3) The frequency of extreme drought, severe drought, moderate drought, and mild drought within 60 years of 21 meteorological stations accounted for 28.38%, 50.48%, 8.85%, and 7.38%, respectively, and the frequency above severe drought was the highest. (4) The sensitivity of meteorological factors gradually increased from northwest to southeast, and MI was the most sensitive to the change of precipitation (P), followed by net radiation (Rn), wind speed (u2), mean temperature (Tmean), relative humidity (RH) and maximum temperature (Tmax). MI was the least sensitive to the change of minimum temperature (Tmin). P is the most important meteorological variable that contributes to the increase of MI, followed by u2, Tmean, and Tmin. Rn, Tmax, and RH have the least influence, and the total contribution of the seven meteorological factors is 85.59%. Compared with the reference evapotranspiration, P is the main factor affecting the dry and wet variations in Hexi Corridor.

2.
Sci Rep ; 14(1): 19431, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169142

RESUMO

The sediment content and transport rate of rivers are crucial indicators reflecting soil erosion, water quality, and water resource management in a region. Studying changes in river sediment transport rates within a basin is essential for evaluating water quality, restoring water ecosystems, and implementing soil and water conservation measures. This study focused on the Shule River Basin and utilized various methods such as moving average, cumulative anomaly, Mann-Kendall mutation test, Mann-Kendall (M-K) trend test, Sen's slope estimation, Correlation analysis, wavelet analysis, R/S analysis, ARCGIS10.7 interpolation, non-uniformity coefficient, and concentration to analyze data from hydrologic stations at Changmapu (CMP), Panjiazhuang (PJZ), and Dangchengwan (DCW). The research examined the temporal and spatial characteristics of sediment transport rates and identified key driving factors. Findings revealed significant increases in annual sediment transport rates at CMP and PJZ by 12.227 and 4.318 kg/s (10a)-1, respectively, while DCW experienced a decrease of 0.677 kg/s (10a)-1. The sediment transport rate of the three stations had a sudden change around 1994. The average annual sediment transport rates displayed distinct cycles, with CMP, PJZ, and DCW showing cycles of 51a, 53a, and 29a respectively. Additionally, while CMP and PJZ exhibited a continuous upward trend in sediment transport rates, DCW showed a consistent decline. The annual average sediment transport rates of CMP, PJZ, and DCW were 1305.43 kg/s, 810.06 kg/s, and 247.80 kg/s, respectively. These research findings contribute to enhancing the comprehension of sediment dynamics in the arid region of northwest China and offer a theoretical basis for the restoration and management of ecological environments in similar areas in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA