Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Bioresour Technol ; : 131094, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986885

RESUMO

Triclosan (TCS), a hydrophobic antibacterial agent, is extensive application in daily life. Despite a low biodegradability rate, its hydrophobicity results in its accumulation in waste-activated sludge (WAS) during domestic and industrial wastewater treatment. While anaerobic digestion is the foremost strategy for WAS treatment, limited research has explored the interphase migration behavior and impacts of TCS on WAS degradation during anaerobic digestion. This study revealed TCS migration between solid- and liquid-phase in WAS digestion. The solid-liquid distribution coefficients of TCS were negative for proteins and polysaccharides and positive for ammonium. High TCS levels promoted volatile-fatty-acid accumulation and reduced methane production. Enzyme activity tests and functional prediction indicated that TCS increased enzyme activity associated with acid production, in contrast to the inhibition of key methanogenic enzymes. The findings of the TCS migration behavior and its impacts on WAS anaerobic digestion provide an in-depth understanding of the evolution of enhanced TCS-removing technology.

2.
J Hazard Mater ; 475: 134931, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889467

RESUMO

In this study, oversized microplastics (OMPs) were intentionally introduced into soil containing manure-borne doxycycline (DOX). This strategic approach was used to systematically examine the effects of combined OMP and DOX pollution on the growth of pak choi, analyze alterations in soil environmental metabolites, and explore the potential migration of antibiotic resistance genes (ARGs). The results revealed a more pronounced impact of DOX than of OMPs. Slender-fiber OMPs (SF OMPs) had a more substantial influence on the growth of pak choi than did coarse-fiber OMPs (CF OMPs). Conversely, CF OMPs had a more significant effect on the migration of ARGs within the system. When DOX was combined with OMPs, the negative effects of DOX on pak choi growth were mitigated through the synthesis of indole through the adjustment of carbon metabolism and amino acid metabolism in pak choi roots. In this process, Pseudohongiellaceae and Xanthomonadaceae were key bacteria. During the migration of ARGs, the potential host bacterium Limnobacter should be considered. Additionally, the majority of potential host bacteria in the pak choi endophytic environment were associated with tetG. This study provides insights into the intricate interplay among DOX, OMPs, ARGs, plant growth, soil metabolism, and the microbiome.


Assuntos
Antibacterianos , Doxiciclina , Esterco , Microplásticos , Poluentes do Solo , Doxiciclina/farmacologia , Doxiciclina/toxicidade , Antibacterianos/toxicidade , Antibacterianos/farmacologia , Esterco/microbiologia , Poluentes do Solo/toxicidade , Microplásticos/toxicidade , Resistência Microbiana a Medicamentos/genética , Microbiologia do Solo , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Genes Bacterianos/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Multiômica
3.
Molecules ; 29(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38893427

RESUMO

An external electric field is an effective tool to induce the polymorphic transformation of molecular crystals, which is important practically in the chemical, material, and energy storage industries. However, the understanding of this mechanism is poor at the molecular level. In this work, two types of order parameters (OPs) were constructed for the molecular crystal based on the intermolecular distance, bond orientation, and molecular orientation. Using the K-means clustering algorithm for the sampling of OPs based on the Euclidean distance and density weight, the polymorphic transformation of TNT was investigated using a finite temperature string (FTS) under external electric fields. The potential of mean force (PMF) was obtained, and the essence of the polymorphic transformation between o-TNT and m-TNT was revealed, which verified the effectiveness of the FTS method based on K-means clustering to OPs. The differences in PMFs between the o-TNT and transition state were decreased under external electric fields in comparison with those in no field. The fields parallel to the c-axis obviously affected the difference in PMF, and the relationship between the changes in PMFs and field strengths was found. Although the external electric field did not promote the convergence, the time of the polymorphic transformation was reduced under the external electric field in comparison to its absence. Moreover, under the external electric field, the polymorphic transformation from o-TNT to m-TNT occurred while that from m-TNT to o-TNT was prevented, which was explained by the dipole moment of molecule, relative permittivity, chemical potential difference, nucleation work and nucleation rate. This confirmed that the polymorphic transformation orientation of the molecular crystal could be controlled by the external electric field. This work provides an effective way to explore the polymorphic transformation of the molecular crystals at a molecular level, and it is useful to control the production process and improve the performance of energetic materials by using the external electric fields.

4.
Environ Res ; 252(Pt 1): 118859, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574986

RESUMO

Electrocatalytic hydrodechlorination (EHDC) is a promising approach to safely remove halogenated emerging contaminants (HECs) pollutants. However, sluggish production dynamics of adsorbed atomic H (H*ads) limit the applicability of this green process. In this study, bimetallic Pd-Cu@MXene catalysts were synthesized to achieve highly efficient removal of HECs. The alloy electrode (Pd-Cu@MX/CC) exhibited better EHDC performance in comparison to Pd@MX/CC electrode, resulting in diclofenac degradation efficiency of 93.3 ± 0.1%. The characterization analysis revealed that the Pd0/PdII ratio decreased by forming bimetallic Pd-Cu alloy. Density functional theory calculations further demonstrated the electronic configuration modulation of the Pd-Cu@MXene catalysts, optimizing binging energies for H* and thereby facilitating H*ads production and tuning the reduction capability of H*ads. Noteably, the amounts and reduction potential of H*ads for Pd-Cu@MXene catalysts were 1.5 times higher and 0.37 eV lower than those observed for the mono Pd electrode. Hence, the introduction of Cu into the Pd catalyst optimized the dynamics of H*ads production, thereby conferring significant advantages to EHDC reactions. This augmentation was underscored by the successful application of the alloy catalysts supported by MXene in EHDC experiments involving other HECs, which represented a new paradigm for EHDC for efficient recalcitrant pollutant removal by H*ads.


Assuntos
Cobre , Paládio , Catálise , Cobre/química , Paládio/química , Poluentes Químicos da Água/química , Adsorção , Halogenação , Técnicas Eletroquímicas/métodos , Eletrodos , Diclofenaco/química
5.
Chem Biol Drug Des ; 103(1): e14358, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37749299

RESUMO

Parkinson's disease (PD) is the commonest neurodegenerative disorder. It reduces motor and cognitive function in patients. Vinpocetine (Vinp) has the effects of anti-inflammatory and antioxidant, and could improve cognitive function in patients. This study was aimed to investigating the therapeutic effects of Vinp on dyskinesia in a 6-Hydroxydopamine hydrobromide (6-OHDA)-induced PD rat model. We constructed a PD rat model by injecting 6-OHDA, and intervened with Vinp for 7 days. The motor function of the rats was evaluated by an open-field test and rotation test. Besides, H&E staining was applied to observe the changes of dopaminergic neurons in the striatum. The levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in the rat striatum were detected. We assessed the impact of Vinp on α-synuclein (α-Syn) and Wnt/ß-catenin signaling pathway-related molecules by western blot and qRT-PCR. Rats in the PD group showed reduced horizontal movement frequency and number of squares crossed, increased contact time and rotation frequency, and reduced number of dopaminergic neurons accompanied by severe morphological damage. Vinp treatment increased the horizontal movement frequency and number of squares crossed, reduced the contact time, and rotation frequency in PD rats. Also, Vinp downregulated α-Syn protein expression and MDA level, while upregulated SOD activity in the striatum of PD rats. Furthermore, Vinp treatment activated the Wnt/ß-catenin signaling pathway in the striatum of PD rats. In conclusion, Vinp improved the dyskinesia in 6-OHDA-induced PD rats by alleviating oxidative stress, and these effects may be associated with activating the Wnt/ß-catenin signaling pathway.


Assuntos
Discinesias , Doença de Parkinson , Alcaloides de Vinca , Humanos , Ratos , Animais , Doença de Parkinson/tratamento farmacológico , Via de Sinalização Wnt/fisiologia , Oxidopamina/farmacologia , Oxidopamina/uso terapêutico , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Modelos Animais de Doenças
6.
Huan Jing Ke Xue ; 44(11): 6387-6398, 2023 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-37973120

RESUMO

Effects of continuous cropping on rhizosphere soil physical and chemical properties, soil microbial activity, and community characteristics of Codonopsis pilosula were investigated. The C. pilosula plot(CK) fallow for five years and C. pilosula fields with different years of continuous cropping were studied using Illumina high-throughput sequencing technology combined with soil physical and chemical properties analysis. The response of rhizosphere soil physical and chemical properties, microbial activities, and microbial community characteristics to continuous cropping years of C. pilosula were investigated. The results were as follows:the contents of organic carbon, total phosphorus, total nitrogen, and salt in rhizosphere soil of C. pilosula increased with the extension of continuous cropping years. However, soil pH value decreased with the extension of continuous cropping years. Compared with that in the CK treatment, rhizosphere soil organic carbon content of C. pilosula in continuous cropping for one, two, three, and four years increased by 11.1%, 80.5%, 74.9%, and 78.2%, respectively. Total phosphorus content increased by 11.8%, 52.9%, 66.7%, and 78.4%, and total nitrogen content increased by 31.3%, 68.8%, 52.1%, and 56.3%, respectively. Soil salt content increased significantly under continuous cropping of three and four years, and soil conductivity increased by 54.2% and 84.7% compared with that in the CK treatment, respectively. The C/N ratio of microbial biomass in rhizosphere soil exhibited an increasing trend with the extension of continuous cropping years. Soil respiration entropy and microbial entropy showed a decreasing trend. With the increase in continuous cropping years, the diversity and abundance of bacteria in soil decreased, whereas the diversity and abundance of fungi increased. In addition, with the increase in continuous cropping years, the antagonistic effect between bacterial communities was enhanced, whereas the synergistic effect between fungal communities was mainly observed. Correlation analysis showed that soil total phosphorus, available potassium, carbon to nitrogen ratio of microbial biomass, soil respiration entropy, microbial biomass carbon, and electrical conductivity were the main factors affecting the changes in soil bacterial community characteristics. Soil total nitrogen, available potassium, available phosphorus, and soil respiration entropy were the main factors affecting the changes in fungal community characteristics. In conclusion, continuous cropping significantly changed the physical and chemical properties of soil and microbial activity and affected the abundance and diversity of bacteria and fungi in soil. This changed the interaction between microorganisms, which disrupted the stability of microbial communities in the soil.


Assuntos
Codonopsis , Solo , Solo/química , Carbono , Rizosfera , Microbiologia do Solo , Fungos , Bactérias/genética , Nitrogênio , Fósforo , Potássio
7.
J Hazard Mater ; 459: 132113, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37487329

RESUMO

In this study, a Pd@MXene catalyst was synthesized to enhance the electrocatalytic hydrodehalogenation (ECH) of emerging halogenated organic pollutants (HOPs) by improving the dispersibility, catalytic activity, and stability of palladium (Pd). The average size of Pd nanoparticles (NPs) was reduced to 3.62 ± 0.34 nm with a more intensive peak of Pd (111), which facilitated atomic hydrogen (H*) production. The Pd@MX/CC electrode demonstrated superior ECH activity for diclofenac (DCF) degradation, with a reaction rate constant (kobs) 2.48 times higher than that of Pd/CC (without MXene). The satisfactory ECH performance of Pd@MX/CC remained consistent within a wide range of initial DCF concentrations (5-100 mg/L), and no significant ECH attenuation was observed even after up to 10 batches. Furthermore, the high activity of Pd@MX/CC was also observed in the ECH of other halogenated organic pollutants (levofloxacin, tetrabromobisphenol A, and diatrizoate). Density functional theory (DFT) calculations revealed that electronic configuration modulation of the Pd@MXene catalyst optimized binging energies to H* , DCF, and dechlorinated products, thereby enhancing the ECH efficiency of DCF.

8.
J Hazard Mater ; 456: 131612, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245359

RESUMO

The different forms and properties of microplastics (MPs) have different effects on the elemental cycles in soil ecosystems, and this is further complicated when the soil contains antibiotics; meanwhile, oversized microplastic (OMP) in soil is always ignored in studies of environmental behavior. In the context of antibiotic action, the effects of OMP on soil carbon (C) and nitrogen (N) cycling have rarely been explored. In this study, we created four types of oversized microplastic (thick fibers, thin fibers, large debris, and small debris) composite doxycycline (DOX) contamination layers (5-10 cm) in sandy loam, hoping to reveal the effects on soil C and N cycling and potential microbial mechanisms when exposed to the combination of manure-borne DOX and different types of OMP from the perspective of metagenomics in the longitudinal soil layer (0-30 cm). The results showed that all different forms of OMP, when combined with DOX, reduced the soil C content in each layer, but only reduced the soil N content in the upper layer of the OMP contamination layer. The microbial structure of the surface soil (0-10 cm) was more noteworthy than that of the deeper soil (10-30 cm). The genera Chryseolinea and Ohtaekwangia were key microbes involved in C and N cycling in the surface layer and regulated carbon fixation in photosynthetic organisms (K00134), carbon fixation pathways in prokaryotes (K00031), methane metabolism (K11212 and K14941), assimilatory nitrate reduction (K00367), and denitrification (K00376 and K04561). The present study is the first to reveal the potential microbial mechanism of C and N cycling under OMP combined with DOX in different layers, mainly the OMP contamination layer and its upper layer, and the OMP shape plays an important role in this process.


Assuntos
Carbono , Doxiciclina , Microplásticos , Ciclo do Nitrogênio , Microbiologia do Solo , Doxiciclina/toxicidade , Ecossistema , Esterco , Microplásticos/toxicidade , Nitrogênio/metabolismo , Plásticos , Areia , Solo/química , Antibacterianos/toxicidade , Ciclo do Nitrogênio/efeitos dos fármacos
9.
Bioresour Technol ; 382: 129121, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37146695

RESUMO

In this work, the bioelectrochemical system (BES) is a feasible alternative for successfully degrading typical refractory emerging contaminant triclosan (TCS). A single-chamber BES reactor with an initial TCS concentration of 1 mg/L, an applied voltage of 0.8 V, and a solution buffered with 50 mM PBS degraded 81.4 ± 0.2% of TCS, exhibiting TCS degradation efficiency improvement to 90.6 ± 0.2% with a biocathode formed from a reversed bioanode. Both bioanode and biocathode were able to degrade TCS with comparable efficiencies of 80.8 ± 4.9% and 87.3 ± 0.4%, respectively. Dechlorination and hydrolysis were proposed as the TCS degradation pathway in the cathode chamber, and another hydroxylation pathway was exclusive in the anode chamber. Microbial community structure analysis indicated Propionibacteriaceae was the predominant member in all electrode biofilms, and the exoelectrogen Geobacter was enriched in anode biofilms. This study comprehensively revealed the feasibility of operating BES technology for TCS degradation.


Assuntos
Triclosan , Eletrodos
10.
J Hazard Mater ; 450: 131014, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842199

RESUMO

Soil aggregates (SAs) are the main site for soil organic carbon (SOC) fixation, and land plastic pollution is increasingly causing many soil problems. The effects of plastic on SAs and SOC seem to be significant, but there is still a lack of relevant research. This study investigated the effects of the "plastic contamination layer" (PCL) formed by the microplastic precursors (namely, oversized microplastics (OMPs)) on the content and properties of SAs of different particle sizes at different soil depths. The results showed that the PCL had an effect on SAs of different sizes at different depths: Compared with the control group, PCL mainly increased the content of SAs in 0-5 cm soil depth, about 28.08 mg macroaggregates, 13.79 mg microaggregates and 59.82 mg silt and clay aggregates per gram of soil. The presence of the PCL mainly down-regulates the organic carbon (OC) content in 0-5 cm macroaggregates, which is about 9.59 g/kg, the OC content in 10-20 cm microaggregates, which is about 16.41 g/kg, and the OC content in 0-5 cm silt and clay aggregates, which is about 4.16 g /kg, downregulated the expression of the key carbon metabolism genes (CMGs) coxL, and inhibited the contribution of the potential CMGs host bacteria Sphaerimonospora and Bacteroides to soil organic matter. This paper emphasizes that the presence of PCL reduced SOC sequestration.

11.
Sci Total Environ ; 865: 161308, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36596419

RESUMO

The performance of electrochemical reduction is often enhanced by electrode modification techniques. However, there is a risk of microbial colonization on the electrode surface to form biofilms in the treatment of actual wastewater with modified electrodes. In this work, the effects of biofilm formation on modified electrodes with reduced graphene oxide (rGO), platinum/carbon (Pt/C), and carbon nanotube (CNT) were investigated in triclosan (TCS) degradation. With biofilm formation, the TCS degradation efficiencies of carbon cloth (CC), rGO@CC, Pt/C@CC, and CNT@CC decayed to 54.53 %, 59.77 %, 69.19 %, and 53.97 %, respectively, compared to the raw electrodes. Confocal laser scanning microscopy and microbial community analysis revealed that the difference in biofilm thickness and activity were the major influencing factors on the discrepant TCS degradation rather than the microbial community structure. The electrochemical performance tests showed that the biofilm formation increased the ohmic resistance by an order of magnitude in rGO@CC, Pt/C@CC, and CNT@CC, and the charge transfer resistance was increased by 2.45, 3.78, and 7.75 times, respectively. The dechlorination and hydrolysis governed the TCS degradation pathway in all electrolysis systems, and the toxicity of electrochemical reductive products was significantly decreased according to the Toxicity Estimation Software Tool analysis. This study presented a systematic assessment of the biofilm formation on modified electrodes in TCS reduction, and the undisputed experimental outcomes were obtained to enrich the knowledge of implementing modified electrodes for practical applications.


Assuntos
Nanotubos de Carbono , Triclosan , Eletrólise , Eletrodos , Biofilmes , Nanotubos de Carbono/química , Platina
12.
Zhongguo Gu Shang ; 35(8): 785-9, 2022 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-35979775

RESUMO

OBJECTIVE: To explore effect of short-segment pedicle screw internal fixation combined with hyperbaric oxygen in treating acute spinal fractures and its influence on recovery of spinal nerve function. METHODS: A total of 96 patients with acute spinal fracture admitted from February 2017 to March 2020 were divided into combined group and control group, with 48 cases in each group. Both groups were treated with short-segment pedicle screw internal fixation. The combined group was given hyperbaric oxygen after surgery. The operation time, surgical blood loss, incision length and other general operation conditions between two groups were recorded. The differences in spinal morphology and function, Ameraican Spinal Injury Assiciation(ASIA) neurological function grade, serum inflammatory factors and ability of daily living activities were observed before and after surgery. RESULTS: There was no significant difference in operation time, surgical blood loss, and incision length between combined group and control group(P>0.05). There were no significant differences in anterior height ratio and Cobb angle between two groups before surgery, 1 week and 6 months after surgery(P>0.05). The height ratio of anterior margin of the injured spine was significantly improved in both groups at 1 week and 6 months after surgery compared with preoperative period (P<0.05), and Cobb angle was significantly reduced in both groups compared with preoperative period (P<0.05). There was no statistically significant difference in serum interleukin-6(IL-6), interleukin-8(IL-8), and tumor necrosis factor-α(TNF-α) levels between two groups at 1 d after surgery(P>0.05);the serum IL-6, IL-8, and TNF-α levels of combined group were lower than those of control group at 1 week after surgery (P<0.05). At 6 months after surgery, ASIA neurological function grade of combined group was C grade in 2 cases, D grade in 23 cases, E grade in 22 cases. In control group, 7 cases was grade C, 26 cases was grade D, 13 cases was grade E, and the difference between two groups was statistically significant(P<0.05). The Barthel score of combined group was higher than that of control group at 1 month and 3 months after surgery, and the difference was statistically significant (P<0.05);at 6 months after surgery, there was no significant difference in Barthel score between two groups(P>0.05). CONCLUSION: Short-segment pedicle screw internal fixation combined with hyperbaric oxygen for the treatment of acute spinal fractures is beneficial to the recovery of spinal nerve function after surgery, and has a certain effect on the early improvement of the patients' activities of daily living.


Assuntos
Oxigenoterapia Hiperbárica , Parafusos Pediculares , Fraturas da Coluna Vertebral , Atividades Cotidianas , Perda Sanguínea Cirúrgica , Fixação Interna de Fraturas , Humanos , Interleucina-6 , Interleucina-8 , Vértebras Lombares/cirurgia , Oxigênio , Estudos Retrospectivos , Fraturas da Coluna Vertebral/cirurgia , Vértebras Torácicas/lesões , Resultado do Tratamento , Fator de Necrose Tumoral alfa
13.
Artigo em Inglês | MEDLINE | ID: mdl-35774754

RESUMO

Objective: To study the effects of epidural anesthesia with different doses of dexmedetomidine and ropivacaine on postoperative hemodynamics and neonatal outcome of cesarean section parturients. Methods. A total of 90 parturients who underwent cesarean section admitted to our hospital from January 2019 to January 2020 were selected as the research objects and were divided into groups A, B, and C according to different dosages of dexmedetomidine, with 30 cases in each group. Groups A, B, and C were given dexmedetomidine 0.5 µg/kg, 0.8 µg/kg, 1.0 µg/kg, respectively, combined with 0.2% ropivacaine. The anesthesia effect, traction response, hemodynamic indexes, and neonatal Apgar score of the three groups were compared; the "Numerical Rating Scale (NRS) Score" was used to assess the postoperative pain of the parturients, and the "Ramsay Sedation Scale" was used to assess the sedation state of the parturients. Results. The superior anesthesia effect of group B was obtained compared with groups A and C (P < 0.05). Group B witnessed a lower degree of grade III stretching response, as compared to group A (P < 0.05). In comparison with groups A and C, superior results of the heart rate and mean artery pressure (MAP) of group B at T1 and T2 were obtained (P < 0.05). The neonatal Apgar score in group B was lower than those in groups A and C (P < 0.05), and the NRS score of group B was also lower than that of group A (P < 0.05). Compared with groups A and C, group B yielded a more favorable outcome in terms of the Ramsay score (P < 0.05). Conclusion. The use of medium-dose dexmedetomidine in cesarean section parturients is safer and can effectively reduce the impact on maternal hemodynamics, which is worthy of promotion and application.

14.
Sci Total Environ ; 838(Pt 3): 156470, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660582

RESUMO

Microplastics (MPs) provide attachment sites for biofilm formation of microorganisms, which can promote their resistance to environmental stress has been proved. However, the effect of MPs on synergy survival among microorganisms under antibiotic stress remains unclear. In the present study, the proliferation of Escherichia coli and Pseudomonas aeruginosa was assessed under enrofloxacin stress with the influence of MPs. Here, MPs reduced the growth speed of E. coli and enhanced that of P. aeruginosa, especially at 12 h, but the final value of OD600 and CFU of both bacteria not be influenced. E. coli was enrofloxacin sensitive (MIC = 0.25 µg/mL), and a high MP concentration in the presence of enrofloxacin notably enhanced the biofilm formation ability of P. aeruginosa, but proliferation decreased. In the coculture system, the proliferation of E. coli (increased 1.42-fold) and P. aeruginosa (increased 1.06-fold) both increased under enrofloxacin stress (0.25 µg/mL) with high-concentration MP addition. P. aeruginosa may provide the biofilm matrix for E. coli to resist the stress of enrofloxacin. The high concentration of cyclic AMP secreted by E. coli may slightly inhibited biofilm formation, leading to a decrease in the fitness cost of P. aeruginosa; thus, the proliferation of P. aeruginosa increased. The present study is the first to show that MP combined with antibiotics stimulates the metabolic cooperation of bacteria to promote proliferation.


Assuntos
Escherichia coli , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Bactérias , Biofilmes , Proliferação de Células , AMP Cíclico/farmacologia , Enrofloxacina , Testes de Sensibilidade Microbiana , Microplásticos , Plásticos
15.
BMC Plant Biol ; 22(1): 167, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366809

RESUMO

BACKGROUND: Pinus tabuliformis adapts to cold climate with dry winter in northern China, serving as important commercial tree species. The TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTOR family(TCP)transcription factors were found to play a role in the circadian clock system in Arabidopsis. However, the role of TCP transcription factors in P. tabuliformis remains little understood. RESULTS: In the present study, 43 TCP genes were identified from P. tabuliformis genome database. Based on the phylogeny tree and sequence similarity, the 43 TCP genes were classified into four groups. The motif results showed that different subfamilies indeed contained different motifs. Clade II genes contain motif 1, clade I genes contain motif 1, 8, 10 and clade III and IV contain more motifs, which is consistent with our grouping results. The structural analysis of PtTCP genes showed that most PtTCPs lacked introns. The distribution of clade I and clade II on the chromosome is relatively scattered, while clade III and clade IV is relatively concentrated. Co-expression network indicated that PtTCP2, PtTCP12, PtTCP36, PtTCP37, PtTCP38, PtTCP41 and PtTCP43 were co-expressed with clock genes in annual cycle and their annual cycle expression profiles both showed obvious seasonal oscillations. PtTCP2, PtTCP12, PtTCP37, PtTCP38, PtTCP40, PtTCP41, PtTCP42 and PtTCP43 were co-expressed with clock genes in diurnal cycle. Only the expression of PtTCP42 showed diurnal oscillation. CONCLUSIONS: The TCP gene family, especially clade II, may play an important role in the regulation of the season and circadian rhythm of P. tabuliformis. In addition, the low temperature in winter may affect the diurnal oscillations.


Assuntos
Arabidopsis , Pinus , Arabidopsis/genética , Ritmo Circadiano/genética , Pinus/genética , Pinus/metabolismo , Estações do Ano , Fatores de Transcrição/metabolismo
16.
Plant Sci ; 316: 111167, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35151451

RESUMO

Development after endo-dormancy release ensures perennial plants, such as forest trees, proper response to environmental changes and enhances their adaptability. In northern hemisphere, megasporophore and microsporophore of conifers undergo dormancy to complete their development. Here combined with transcriptome data, we used high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (ESI-HPLC-MS/MS) to quantitatively analyse the various hormones (Abscisic Acid (ABA), 3-Indoleacetic acid (IAA), Gibberellins (GAs), Cytokinin (CTK), Jasmonic acid (JA) and Salicylic acid (SA)) of Chinese pine (Pinus tabuliformis Carr.) male strobili after endo-dormancy release. More specifically, we analysed endogenous hormones and their related-genes and verified the important role of ABA in plants growth and development. We observed rapid decrease in ABA content after dormancy release, resulting in reducing the inhibitory effect on male strobili growth. Similarly, rapid drop in ABA/GA ratio was observed and was associated with the start of male strobili growth and development. Combined with transcriptome data, we found that HAB2-SnRK2.10 played a central role in the ABA pathway in the entire network of hormones regulating male strobili development. Due to external environment warming, the differentially expressed HAB2-SnRK gene led to ABA content rapid decline, thus initiating male strobili growth. We constructed a network of hormone-regulated development to understand the interactions between hormones after male strobili dormancy release of male strobili. This study provided essential foundations for studying megasporophore and microsporophore growth mechanism after endo-dormancy and offered new ideas for flower development in gymnosperms and angiosperms.


Assuntos
Pinus , Reguladores de Crescimento de Plantas , Ácido Abscísico , Regulação da Expressão Gênica de Plantas , Giberelinas , Pinus/metabolismo , Cone de Plantas , Dormência de Plantas , Proteínas de Plantas/metabolismo , Espectrometria de Massas em Tandem , Transcriptoma
17.
Ecotoxicol Environ Saf ; 232: 113294, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35152113

RESUMO

Black soldier fly (Hermetia illucens) larvae (BSFL) are common insects that are known for bioconversion of organic waste into a sustainable utilization resource. However, a strategy to increase antibiotic resistance gene (ARG) elimination in sustainable and economic ways through BSFL is lacking. In the present study, different larval densities were employed to assess the mcr-1 and tetX elimination abilities, and potential mechanisms were investigated. The application and economic value of each larval density were also analyzed. The results showed that the 100 larvae cultured in 100 g of manure group had the best density because the comprehensive disadvantage evaluation ratio was the lowest (14.97%, good bioconversion manure quality, low ARG deposition risk and reasonable larvae input cost). Further investigation showed that mcr-1 could be significantly decreased by BSFL bioconversion (4.42 ×107 copies/g reduced to 4.79 ×106-2.14 ×105 copies/g)(P<0.05); however, mcr-1 was increasingly deposited in the larval gut with increasing larval density. The tetX abundance was stabilized by BSFL bioconversion, except that the abundance at the lowest larval density increased (1.22 ×1010 copies/g increase, 34-fold). Escherichia was the host of mcr-1 and tetX in all samples, especially in fresh manure; Alcaligenes was the host of tetX in bioconversion manure; and the abundance of Alcaligenes was highly correlated with the pH of bioconversion manure. The pH of bioconversion manure was extremely correlated with the density of larvae. Klebsiella and Providencia were both hosts of tetX in the BSF larval gut, and Providencia was also the host of mcr-1 in the BSF larval gut. The density of larvae influenced the bioconversion manure quality and caused the ARG host abundance to change to control the abundance of ARGs, suggesting that larval density adjustment was a useful strategy to manage the ARG risk during BSFL manure bioconversion.


Assuntos
Dípteros , Esterco , Animais , Antibacterianos , Dípteros/genética , Resistência Microbiana a Medicamentos/genética , Larva , Aves Domésticas
18.
Paediatr Perinat Epidemiol ; 36(3): 390-398, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34431114

RESUMO

BACKGROUND: For initial respiratory management, continuous positive airway pressure (CPAP) is increasingly used for preterm infants, especially for gestational age less than 32 weeks. However, neonatologists are concerned about the potential risks of CPAP support failure. OBJECTIVES: To examine the association between different initial respiratory support modalities and the outcomes of preterm infants at <32 weeks of gestation across multiple neonatal intensive care units (NICU) in China. METHODS: This study was carried out over a period of 12 months in 2018. Unadjusted relative risks (RR) for demographic and clinical characteristics were calculated for CPAP failure and CPAP success in the total cohort using log-linear model based on generalised estimating equations for clustered observations. RESULTS: Among 1560 preterm infants delivered at <32 weeks, the incidence of CPAP failure was 10.3%. After adjustment for demographic and clinical factors, the relative risk of mortality (RR 7.54, 95% CI 5.56, 10.44), pneumothorax (RR 9.85, 95% CI 2.89, 61.53), pulmonary haemorrhage (RR 7.78, 95% CI 4.51, 14.64) and BPD (RR 3.65, 95% CI 3.65, 4.51) were considerably higher for infants in the CPAP failure group than those in the CPAP-S group. However, the risk of poor outcomes in CPAP failure infants was similar to that of those in the initial mechanical ventilation (MV) group. CONCLUSIONS: Continuous positive airway pressure failure was associated with an increased risk of mortality and major morbidities, including BPD, pulmonary haemorrhage and pneumothorax, and was comparable to the risk associated with initial MV.


Assuntos
Pneumotórax , Síndrome do Desconforto Respiratório do Recém-Nascido , Pressão Positiva Contínua nas Vias Aéreas/efeitos adversos , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Pneumotórax/etiologia , Gravidez , Síndrome do Desconforto Respiratório do Recém-Nascido/complicações , Síndrome do Desconforto Respiratório do Recém-Nascido/epidemiologia , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Estudos Retrospectivos
19.
Plant Physiol ; 187(1): 247-262, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618133

RESUMO

The reproductive transition is an important event that is crucial for plant survival and reproduction. Relative to the thorough understanding of the vegetative phase transition in angiosperms, a little is known about this process in perennial conifers. To gain insight into the molecular basis of the regulatory mechanism in conifers, we used temporal dynamic transcriptome analysis with samples from seven different ages of Pinus tabuliformis to identify a gene module substantially associated with aging. The results first demonstrated that the phase change in P. tabuliformis occurred as an unexpectedly rapid transition rather than a slow, gradual progression. The age-related gene module contains 33 transcription factors and was enriched in genes that belong to the MADS (MCMl, AGAMOUS, DEFICIENS, SRF)-box family, including six SOC1-like genes and DAL1 and DAL10. Expression analysis in P. tabuliformis and a late-cone-setting P. bungeana mutant showed a tight association between PtMADS11 and reproductive competence. We then confirmed that MADS11 and DAL1 coordinate the aging pathway through physical interaction. Overexpression of PtMADS11 and PtDAL1 partially rescued the flowering of 35S::miR156A and spl1,2,3,4,5,6 mutants in Arabidopsis (Arabidopsis thaliana), but only PtMADS11 could rescue the flowering of the ft-10 mutant, suggesting PtMADS11 and PtDAL1 play different roles in flowering regulatory networks in Arabidopsis. The PtMADS11 could not alter the flowering phenotype of soc1-1-2, indicating it may function differently from AtSOC1 in Arabidopsis. In this study, we identified the MADS11 gene in pine as a regulatory mediator of the juvenile-to-adult transition with functions differentiated from the angiosperm SOC1.


Assuntos
Proteínas de Domínio MADS/genética , Pinus/fisiologia , Proteínas de Plantas/genética , Proteínas de Domínio MADS/metabolismo , Pinus/genética , Proteínas de Plantas/metabolismo , Reprodução/genética
20.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(8): 809-813, 2021 Aug 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34511170

RESUMO

OBJECTIVES: To evaluate the accuracy and safety of measurements of transcutaneous carbon dioxide partial pressure (TcPCO2) and transcutaneous oxygen partial pressure (TcPO2) at electrode temperatures lower than the value used in clinical practice in very low birth weight infants. METHODS: A total of 45 very low birth weight infants were enrolled. TcPCO2 and TcPO2 measurements were performed in these infants. Two transcutaneous monitors were placed simultaneously for each subject. One electrode was set and maintained at 42℃ used in clinical practice for neonates (control group), and the other was successively set at 38℃, 39℃, 40°C, and 41℃ (experimental group). The paired t-test was used to compare the measurement results between the groups. A Pearson correlation analysis was used to analyze the correlation between the measurement results of the experimental group and control group, and between the measurement results of experimental group and arterial blood gas parameters. RESULTS: There was no significant difference in TcPCO2 between each experimental subgroup (38-41℃) and the control group. TcPCO2 in each experimental subgroup (38-41℃) was strongly positively correlated with TcPCO2 in the control group (r>0.9, P<0.05) and arterial carbon dioxide partial pressure (r>0.8, P<0.05). There were significant differences in TcPO2 between each experimental subgroup (38-41℃) and the control group (P<0.05), but TcPO2 in each experimental subgroup (38-41℃) was positively correlated with TcPO2 in the control group (r=0.493-0.574, P<0.05) and arterial oxygen partial pressure (r=0.324-0.399, P<0.05). No skin injury occurred during transcutaneous measurements at all electrode temperatures. CONCLUSIONS: Lower electrode temperatures (38-41℃) can accurately measure blood carbon dioxide partial pressure in very low birth weight infants, and thus can be used to replace the electrode temperature of 42°C. Transcutaneous measurements at the lower electrode temperatures may be helpful for understanding the changing trend of blood oxygen partial pressure.


Assuntos
Monitorização Transcutânea dos Gases Sanguíneos , Dióxido de Carbono , Eletrodos , Humanos , Lactente , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Oxigênio , Pressão Parcial , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...