Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255244

RESUMO

The mucosal pellicle (MP) is a biological film protecting the oral mucosa. It is composed of bounded salivary proteins and transmembrane mucin MUC1 expressed by oral epithelial cells. Previous research indicates that MUC1 expression enhances the binding of the main salivary protein forming the MP, MUC5B. This study investigated the influence of MUC1 structure on MP formation. A TR146 cell line, which does not express MUC1 natively, was stably transfected with genes coding for three MUC1 isoforms differing in the structure of the two main extracellular domains: the VNTR domain, exhibiting a variable number of tandem repeats, and the SEA domain, maintaining the two bound subunits of MUC1. Semi-quantification of MUC1 using dot blot chemiluminescence showed comparable expression levels in all transfected cell lines. Semi-quantification of MUC5B by immunostaining after incubation with saliva revealed that MUC1 expression significantly increased MUC5B adsorption. Neither the VNTR domain nor the SEA domain was influenced MUC5B anchoring, suggesting the key role of the MUC1 N-terminal domain. AFM-IR nanospectroscopy revealed discernible shifts indicative of changes in the chemical properties at the cell surface due to the expression of the MUC1 isoform. Furthermore, the observed chemical shifts suggest the involvement of hydrophobic effects in the interaction between MUC1 and salivary proteins.

2.
J Agric Food Chem ; 69(13): 3822-3826, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33682421

RESUMO

Flavor is one of the main drivers of food consumption and acceptability. It is associated with pleasure feels during eating. Flavor is a multimodal perception corresponding to the functional integration of information from the chemical senses: olfaction, gustation, and nasal and oral somatosensory inputs. As a result, astringency, as a sensation mediated by the trigeminal nerves, influences food flavor. Despite the importance of astringency in food consumer acceptance, the exact chemosensory mechanism of its detection and the nature of the receptors activated remain unknown. Herein, after reviewing the current hypotheses on the molecular origin of astringency, we proposed a ground-breaking hypothesis on the molecular mechanisms underpinning this sensation as a perspective for future research.


Assuntos
Adstringentes , Sensação , Aromatizantes , Aditivos Alimentares , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...