Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biosci Biotechnol Biochem ; 88(3): 254-259, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-37994666

RESUMO

The Microbiome of the Built Environment (MoBE) is profoundly implicated in various sectors, including food science. The balance between beneficial and pathogenic microbes in these facilities directly influences product quality and public health. Maintaining a careful check on MoBE and external microbes is vital to the food industry to ensure quality control. There is also a risk of contamination in the meat processing facility as well. However, over-sanitization can increase drug-resistant microbes, highlighting the importance of balanced microbial management. Additionally, facility design, influenced by understanding MoBE, can optimize the growth of beneficial microbes and inhibit pathogenic microbes. Microbial mapping, an emerging practice, offers insights into microbial hotspots within facilities, resulting in targeted interventions. As the food industry evolves, the intricate understanding and management of MoBE will be pivotal to ensuring optimal food quality, safety, and innovation.


Assuntos
Microbiota , Ambiente Construído , Carne
3.
Front Cell Dev Biol ; 11: 1290876, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149046

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, continues to spread around the world with serious cases and deaths. It has also been suggested that different genetic variants in the human genome affect both the susceptibility to infection and severity of disease in COVID-19 patients. Angiotensin-converting enzyme 2 (ACE2) has been identified as a cell surface receptor for SARS-CoV and SARS-CoV-2 entry into cells. The construction of an experimental model system using human iPS cells would enable further studies of the association between viral characteristics and genetic variants. Airway and alveolar epithelial cells are cell types of the lung that express high levels of ACE2 and are suitable for in vitro infection experiments. Here, we show that human iPS cell-derived airway and alveolar epithelial cells are highly susceptible to viral infection of SARS-CoV-2. Using gene knockout with CRISPR-Cas9 in human iPS cells we demonstrate that ACE2 plays an essential role in the airway and alveolar epithelial cell entry of SARS-CoV-2 in vitro. Replication of SARS-CoV-2 was strongly suppressed in ACE2 knockout (KO) lung cells. Our model system based on human iPS cell-derived lung cells may be applied to understand the molecular biology regulating viral respiratory infection leading to potential therapeutic developments for COVID-19 and the prevention of future pandemics.

4.
Curr Microbiol ; 81(1): 52, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38155273

RESUMO

Post-fermented tea production involving microbial fermentation is limited to a few regions, such as Southeast Asia and Japan, with Japan's Shikoku island being particularly prominent. Lactiplantibacillus plantarum was the dominant species found in tea leaves after anaerobic fermentation of Awa-bancha in Miyoshi City, Tokushima, and Ishizuchi-kurocha in Ehime. Although the draft genome of L. plantarum from Japanese post-fermented tea has been previously reported, its genetic diversity requires further exploration. In this study, whole-genome sequencing was conducted on four L. plantarum strains isolated from Japanese post-fermented tea using nanopore sequencing. These isolates were then compared with other sources to examine their genetic diversity revealing that L. plantarum isolated from Japanese post-fermented tea contained several highly variable gene regions associated with sugar metabolism and transportation. However, no source-specific genes or clusters were identified within accessory or core gene regions. This study indicates that L. plantarum possesses high genetic diversity and that the unique environment of Japanese post-fermented tea does not appear to exert selective pressure on L. plantarum growth.


Assuntos
Metabolismo dos Carboidratos , Lactobacillus plantarum , Japão , Fermentação , Lactobacillus plantarum/metabolismo , Chá/metabolismo
5.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37960971

RESUMO

The skin microbiome, which varies widely between individuals, plays a crucial role in human health. It also interacts with the environment in various ways, including during the preparation of fermented food. Nukadoko is a pickle and traditional fermented food in Japan that utilizes lactic acid bacteria to ferment vegetables. When preparing or maintaining Nukadoko, it is mixed with bare hands. Despite the known interaction between Nukadoko and human skin, no studies have explored its impact on Nukadoko quality or skin microbiome changes. This study examines these effects during Nukadoko maintenance. Three participants were asked to stir commercially available late-stage Nukadoko for 14 days and not stir it for the remaining 14 days to examine microbial settlement and shedding. Microbiome analysis was performed on human skin and Nukadoko. We found that microorganisms from rice bran beds can temporarily settle on human skin but are shed quickly. Stirring rice bran beds by hand may have short-term effects on the skin microbiome. This study provides insights into the communication between human and food microbiomes in traditional Japanese fermented foods.


Assuntos
Lactobacillales , Microbiota , Oryza , Humanos , Oryza/microbiologia , Fermentação , Verduras
6.
J Biosci Bioeng ; 135(6): 451-457, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37003936

RESUMO

The Kimoto-style fermentation starter is a traditional preparation method of sake brewing. In this process, specific microbial transition patterns have been observed within nitrate-reducing bacteria and lactic acid bacteria during the production process of the fermentation starter. We have characterized phylogenetic compositions and diversity of the bacterial community in a sake brewery performing the Kimoto-style fermentation. Comparing the time-series changes with other sake breweries previously reported, we found a novel type of Kimoto-style fermentation in which the microbial transition differed significantly from other breweries during the fermentation step. Specifically, the lactic acid bacteria, Leuconostoc spp. was a predominant species in the late stage in the preparation process of fermentation starter, on the other hand, Lactobacillus spp., which plays a pivotal role in other breweries, was not detected in this analysis. The discovery of this new variation of microbiome transition in Kimoto-style fermentation has further deepened our understanding of the diversity of sake brewing.


Assuntos
Lactobacillales , Proteínas de Saccharomyces cerevisiae , Humanos , Bebidas Alcoólicas/análise , Bactérias , Fermentação , Microbiologia de Alimentos , Lactobacillus/genética , Leuconostoc/genética , Filogenia , Saccharomyces cerevisiae
8.
Front Microbiol ; 14: 1112638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819013

RESUMO

Introduction: In Kimoto-style fermentation, a fermentation starter is produced before the primary brewing process to stabilize fermentation. Nitrate-reducing bacteria, mainly derived from brewing water, produce nitrite, and lactic acid bacteria such as Leuconostoc can proliferate because of their tolerance toward low temperature and their low nutritional requirements. Later, Lactobacillus becomes the dominant genus, leading to weakly acidic conditions that contribute to control yeasts and undesired bacterial contaminants. However, the sources of these microorganisms that play a pivotal role in Sake brewing have not yet been revealed. Thus, comprehensive elucidation of the microbiome is necessary. Methods: In this study, we performed 16S rRNA amplicon sequencing analysis after sampling from floor, equipment surfaces, and raw materials for making fermentation starters, including koji, and water in Tsuchida Sake brewery, Gunma, Japan. Results: Amplicon sequence variants (ASVs) between the external environments and the fermentation starter were compared, and it was verified that the microorganisms in the external environments, such as built environments, equipment surfaces, and raw materials in the sake brewery, were introduced into the fermentation starter. Furthermore, various adventitious microbes present in the fermentation starter of early days and from the external environments were detected in a nonnegligible proportion in the starter, which may impact the taste and flavor. Discussion: These findings illuminate the uncharacterized microbial dark matter of sake brewing, the sources of microbes in Kimoto-style fermentation.

9.
Biosci Biotechnol Biochem ; 86(12): 1705-1717, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36271809

RESUMO

Kishu-Narezushi is a spontaneously fermented food comprising fish, rice, and salt. During spontaneous fermentation, the microbiome may differ among batches, even when manufactured in the same way. In addition, analyses of changes in the chemical composition of the product are important for clarifying flavor characteristics. We collected basic information on the microbiome and chemical composition of Kishu-Narezushi using multiple batches of fermentation and evaluated whether the microbiome was homogeneous. The fungal microbiome of Kishu-Narezushi was dominated by Saccharomycetales and Trichosporonales. The bacterial microbiome was diverse, although seven specific genera of lactic acid bacteria were identified. Glutamic acid, histidine, and serine levels decreased after ∼10 days of fermentation. Succinic acid, characteristic of Kishu-Narezushi, accumulated upon the consumption of glutamic acid. Though the microbiome was diverse, the chemical composition was similar among the batches.


Assuntos
Lactobacillales , Microbiota , Animais , Ácido Glutâmico , Bactérias , Fermentação
10.
Microbiol Resour Announc ; 11(1): e0084621, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35023781

RESUMO

Bifidobacterium adolescentis 4-2 was isolated from healthy human feces. Here, we report a draft genome sequence of this bacterium, which may clarify the functionality of gut microbiota-brain communication. The draft genome comprises 2.39 Mb, with an average G+C content of 59.2% and 2,028 coding DNA sequences. An operon for gamma aminobutyric acid (GABA) biosynthesis was observed in the draft genome.

11.
Microbiol Resour Announc ; 9(18)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32354970

RESUMO

Lactobacillus plantarum IYO1511, isolated from a traditional postfermented tea, is a predominant species associated with Ishizuchi-kurocha. Here, we report the whole-genome sequence of this bacterium. The draft genome comprises 3,229,083 nucleotides and 3,044 coding DNA sequences (CDSs), with an average G+C content of 44.5%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...