Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338883

RESUMO

The rates of alcohol use disorder among women are growing, yet little is known about how the female brain is affected by alcohol. The neuroimmune system, and specifically microglia, have been implicated in mediating alcohol neurotoxicity, but most preclinical studies have focused on males. Further, few studies have considered changes to the microglial phenotype when examining the effects of ethanol on brain structure and function. Therefore, we quantified microglial reactivity in female rats using a binge model of alcohol dependence, assessed through morphological and phenotypic marker expression, coupled with regional cytokine levels. In a time- and region-dependent manner, alcohol altered the microglial number and morphology, including the soma and process area, and the overall complexity within the corticolimbic regions examined, but no significant increases in the proinflammatory markers MHCII or CD68 were observed. The majority of cytokine and growth factor levels examined were similarly unchanged. However, the expression of the proinflammatory cytokine TNFα was increased, and the anti-inflammatory IL-10, decreased. Thus, female rats showed subtle differences in neuroimmune reactivity compared to past work in males, consistent with reports of enhanced neuroimmune responses in females across the literature. These data suggest that specific neuroimmune reactions in females may impact their susceptibility to alcohol neurotoxicity and other neurodegenerative events with microglial contributions.


Assuntos
Alcoolismo , Humanos , Masculino , Ratos , Animais , Feminino , Alcoolismo/metabolismo , Microglia/metabolismo , Etanol/farmacologia , Encéfalo/metabolismo , Citocinas/metabolismo
2.
Cells ; 12(21)2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37947650

RESUMO

During adolescence, the brain is highly susceptible to alcohol-induced damage and subsequent neuroimmune responses, effects which may enhance development of an alcohol use disorder (AUD). Neuroimmune reactions are implicated in adolescent alcohol exposure escalating adulthood drinking. Therefore, we investigated whether intermittent alcohol exposure in male, adolescent rats (AIE) escalated adult drinking via two-bottle choice (2BC). We also examined the influence of housing environment across three groups: standard (group-housed with enrichment during 2BC), impoverished (group-housed without enrichment during 2BC), or isolation (single-housed without bedding or enrichment throughout). In the standard group immediately after AIE/saline and after 2BC, we also examined the expression of microglial marker, Iba1, reactive astrocyte marker, vimentin, and neuronal cell death dye, FluoroJade B (FJB). We did not observe an escalation of adulthood drinking following AIE, regardless of housing condition. Further, only a modest neuroimmune response occurred after AIE in the standard group: no significant microglial reactivity or neuronal cell death was apparent using this model, although some astrocyte reactivity was detected in adolescence following AIE that resolved by adulthood. These data suggest that the lack of neuroimmune response in adolescence in this model may underlie the lack of escalation of alcohol drinking, which could not be modified through isolation stress.


Assuntos
Alcoolismo , Etanol , Ratos , Masculino , Animais , Etanol/farmacologia , Doenças Neuroinflamatórias , Consumo de Bebidas Alcoólicas/efeitos adversos , Alcoolismo/metabolismo , Encéfalo/metabolismo
3.
Brain Behav Immun ; 114: 438-452, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37709153

RESUMO

Aging is associated with a significant shift in immune system reactivity ("inflammaging"), as basal inflammation increases but protective responses to infection are compromised. The immune system exhibits considerable sex differences, which may influence the process of inflammaging, including immune cell activation and behavioral consequences of immune signaling (i.e., impaired memory). Here, we test the hypothesis that sex differences in immune aging may mediate sex differences in cognitive decline. Aged male and female rats received peripheral immune stimulation using lipopolysaccharide (LPS), then molecular, cellular, and behavioral outcomes were assessed. We observed that LPS-treated aged male rats showed cognitive impairment and increased neuroinflammatory responses relative to adult males. In contrast, aged female rats did not display these aging-related deficits. Using transcriptomic and flow cytometry analyses, we further observed significant age- and sex- dependent changes in immune cell populations in the brain parenchyma and meninges, indicating a broad shift in the neuroinflammatory environment that may potentiate these behavioral effects. Ovariectomized aged female rats were also resistant to inflammation-induced memory deficits, indicating that ovarian hormones are not required for the attenuated neuroinflammation in aged females. Overall, our results indicate that males have amplified inflammatory priming with age, which contributes to age-associated cognitive decline. Our findings highlight sexual dimorphism in mechanisms of aging, and suggest that sex is a crucial consideration for identifying therapies for aging and neuroinflammation.


Assuntos
Disfunção Cognitiva , Microglia , Ratos , Animais , Feminino , Masculino , Caracteres Sexuais , Doenças Neuroinflamatórias , Lipopolissacarídeos/farmacologia , Inflamação
4.
Neuroscience ; 529: 183-199, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37598836

RESUMO

Recent evidence suggests that alcohol use disorder (AUD) may manifest itself differently in women compared to men. Women experience AUDs on an accelerated timeline and may have certain regional vulnerabilities. In male rats, neuronal cell death and astrocyte reactivity are noted following induction of alcohol dependence in an animal model of an AUD. However, the regional and temporal patterns of neurodegeneration and astrocyte reactivity have yet to be fully examined in females using this model. Therefore, adult female rats were exposed to a 4-day binge model of alcohol dependence followed by different periods of abstinence. Histological markers for FluoroJade B, a label of degenerating neurons, and vimentin, a marker for reactive astrocytes, were utilized. The expression of these markers in cortical and limbic regions was quantified immediately after their last dose (e.g., T0), or 2, 7, and 14 days later. Significant neuronal cell death was noted in the entorhinal cortex and the hippocampus, similar to previous reports in males, but also in several cortical regions not previously observed. Vimentin immunoreactivity was noted in the same regions as previously reported, in addition to three novel regions. Vimentin immunoreactivity also occurred at earlier and later time points in some cortical and hippocampal regions. These data suggest that both neuronal cell death and astrocyte reactivity could be more widespread in females compared to males. Therefore, this study provides a framework for specific regions and time points which should be examined in future studies of alcohol-induced damage that include female rats.


Assuntos
Alcoolismo , Humanos , Ratos , Masculino , Feminino , Animais , Alcoolismo/patologia , Vimentina , Astrócitos/patologia , Etanol , Hipocampo/patologia
5.
Front Behav Neurosci ; 17: 1223883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37589035

RESUMO

Binge-like ethanol exposure during adolescence has been shown to produce long lasting effects in animal models including anxiety-like behavior that can last into young adulthood and impairments in cognition that can last throughout most of the lifespan. However, little research has investigated if binge-like ethanol exposure during adolescence produces persistent anxiety-like behavior and concomitantly impairs cognition late in life. Furthermore, few studies have investigated such behavioral effects in both female and male rats over the lifespan. Finally, it is yet to be determined if binge-like ethanol exposure during adolescence alters microglia activation in relevant brain regions late in life. In the present study female and male adolescent rats were exposed to either 3.0 or 5.0 g/kg ethanol, or water control, in a chronic intermittent pattern before being tested in the elevated plus maze and open field task over the next ∼18 months. Animals were then trained in a spatial reference task via the Morris water maze before having their behavioral flexibility tested. Finally, brains were removed, sectioned and presumptive microglia activation determined using autoradiography for [3H]PK11195 binding. Males, but not females, displayed an anxiety-like phenotype initially following the chronic intermittent ethanol exposure paradigm which resolved in adulthood. Further, males but not females had altered spatial reference learning and impaired behavioral flexibility late in life. Conversely, [3H]PK11195 binding was significantly elevated in females compared to males late in life and the level of microglia activation interacted as a function of sex and brain regions, but there was no long-term outcome related to adolescent alcohol exposure. These data further confirm that binge-like ethanol exposure during adolescence produces alterations in behavior that can last throughout the lifespan. In addition, the data suggest that microglia activation late in life is not exacerbated by prior binge-like ethanol exposure during adolescence but the expression is sex- and brain region-dependent across the lifespan.

6.
Alcohol ; 107: 153-167, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36150610

RESUMO

As the percentage of the global population over age 65 grows, and with it a subpopulation of individuals with alcohol use disorder (AUD), understanding the effect of alcohol on the aged brain is of utmost importance. Neuroinflammation is implicated in both natural aging as well as alcohol use, and its role in alterations to brain morphology and function may be exacerbated in aging individuals who drink alcohol to excess. The neuroimmune response to alcohol in aging is complex. The few studies investigating this issue have reported heightened basal activity and either hypo- or hyper-reactivity to an alcohol challenge. This review of preclinical research will first introduce key players of the immune system, then explore changes in neuroimmune function with aging or alcohol alone, with discussion of vulnerable brain regions, changes in cytokines, and varied reactions of microglia and astrocytes. We will then consider different levels of alcohol exposure, relevant animal models of AUD, and neuroimmune activation by alcohol across the lifespan. By identifying key findings, challenges, and targets for future research, we hope to bring more attention and resources to this underexplored area of inquiry.


Assuntos
Alcoolismo , Etanol , Animais , Etanol/efeitos adversos , Encéfalo , Consumo de Bebidas Alcoólicas , Sistema Imunitário
7.
Alcohol ; 104: 13-21, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35981637

RESUMO

Initiating alcohol use in adolescence significantly increases the likelihood of developing adult alcohol use disorder (AUD). However, it has been difficult to replicate adolescent alcohol exposure leading to increased adult alcohol intake across differing preclinical models. In the present study, differentially housed male rats (group vs. single cages) were used to determine the effects of voluntary intermittent exposure of saccharin-sweetened ethanol during adolescence on adult intake of unsweetened 20% ethanol. Adolescent male rats were assigned to group- or isolated-housing conditions and underwent an intermittent 2-bottle choice in adolescence (water only or water vs. 0.2% saccharin/20% ethanol), and again in adulthood (water vs. 20% ethanol). Intermittent 2-bottle choice sessions lasted for 24 h, and occurred three days per week, for five weeks. Rats were moved from group or isolated housing to single-housing cages for 2-bottle choice tests and returned to their original housing condition on off days. During adolescence, rats raised in isolated-housing conditions consumed significantly more sweetened ethanol than rats raised in group-housing conditions, an effect that was enhanced across repeated exposures. In adulthood, rats raised in isolated-housing conditions and exposed to sweetened ethanol during adolescence also consumed significantly higher levels of unsweetened 20% ethanol compared to group-housed rats. The effect was most pronounced over the first five re-exposure sessions. Housing conditions alone had little effect on adult ethanol intake. These preclinical results suggest that social isolation stress, combined with adolescent ethanol exposure, may play a key role in adult AUD risk.


Assuntos
Alcoolismo , Sacarina , Ratos , Animais , Masculino , Etanol/farmacologia , Consumo de Bebidas Alcoólicas , Isolamento Social , Água
8.
Drug Alcohol Depend ; 232: 109298, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35038606

RESUMO

BACKGROUND: Preclinical models simulating adolescent substance use leading to increased vulnerability for substance use disorders in adulthood are needed. Here, we utilized a model of alcohol and nicotine co-use to assess adult addiction vulnerability following adolescent alcohol exposure. METHODS: In Experiment 1, adolescent (PND30) male and female Sprague-Dawley rats received 25% ethanol (EtOH) or a control solution via oral gavage every 8 h, for 2 days. In young adulthood, animals were tested with a 2-bottle choice between H20% and 15% EtOH or 0.2% saccharin/15% EtOH, followed by co-use of oral Sacc/EtOH and operant-based i.v. nicotine (0.03 mg/kg/infusion) self-administration. In Experiment 2, adolescents received control gavage, EtOH gavage, or no-gavage, and were tested in young adulthood in a 2-bottle choice between H20% and 15% EtOH, Sacc/EtOH, or 0.2% saccharin. RESULTS: In Experiment 1, the adolescent EtOH gavage reduced adult EtOH consumption in the 2-bottle choice, but not during the co-use phase. During co-use, Sacc/EtOH served as an economic substitute for nicotine. In Experiment 2, the control gavage increased adult EtOH drinking relative to the no-gavage control group, an effect that was mitigated in the EtOH gavage group. In both experiments, treatment group differences in EtOH consumption were largely driven by males. CONCLUSIONS: EtOH administration via oral gavage in adolescence decreased EtOH consumption in adulthood without affecting EtOH and nicotine co-use. Inclusion of a no-gavage control in Experiment 2 revealed that the gavage procedure increased adult EtOH intake and that including EtOH in the gavage buffered against the effect.


Assuntos
Etanol , Nicotina , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Animais , Feminino , Masculino , Nicotina/farmacologia , Ratos , Ratos Sprague-Dawley , Autoadministração
9.
Biology (Basel) ; 10(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34681047

RESUMO

Microglia act as the immune cells of the central nervous system (CNS). They play an important role in maintaining brain homeostasis but also in mediating neuroimmune responses to insult. The interactions between neurons and microglia represent a key process for neuroimmune regulation and subsequent effects on CNS integrity. However, the molecular mechanisms of neuron-glia communication in regulating microglia function are not fully understood. One recently described means of this intercellular communication is via nano-sized extracellular vesicles (EVs) that transfer a large diversity of molecules between neurons and microglia, such as proteins, lipids, and nucleic acids. To determine the effects of neuron-derived EVs (NDEVs) on microglia, NDEVs were isolated from the culture supernatant of rat cortical neurons. When NDEVs were added to primary cultured rat microglia, we found significantly improved microglia viability via inhibition of apoptosis. Additionally, application of NDEVs to cultured microglia also inhibited the expression of activation surface markers on microglia. Furthermore, NDEVs reduced the LPS-induced proinflammatory response in microglia according to reduced gene expression of proinflammatory cytokines (TNF-α, IL-6, MCP-1) and iNOS, but increased expression of the anti-inflammatory cytokine, IL-10. These findings support that neurons critically regulate microglia activity and control inflammation via EV-mediated neuron-glia communication. (Supported by R21AA025563 and R01AA025591).

10.
Front Neurosci ; 15: 689601, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594180

RESUMO

Hippocampal neurodegeneration is a consequence of excessive alcohol drinking in alcohol use disorders (AUDs), however, recent studies suggest that females may be more susceptible to alcohol-induced brain damage. Adult hippocampal neurogenesis is now well accepted to contribute to hippocampal integrity and is known to be affected by alcohol in humans as well as in animal models of AUDs. In male rats, a reactive increase in adult hippocampal neurogenesis has been observed during abstinence from alcohol dependence, a phenomenon that may underlie recovery of hippocampal structure and function. It is unknown whether reactive neurogenesis occurs in females. Therefore, adult female rats were exposed to a 4-day binge model of alcohol dependence followed by 7 or 14 days of abstinence. Immunohistochemistry (IHC) was used to assess neural progenitor cell (NPC) proliferation (BrdU and Ki67), the percentage of increased NPC activation (Sox2+/Ki67+), the number of immature neurons (NeuroD1), and ectopic dentate gyrus granule cells (Prox1). On day seven of abstinence, ethanol-treated females showed a significant increase in BrdU+ and Ki67+ cells in the subgranular zone of the dentate gyrus (SGZ), as well as greater activation of NPCs (Sox2+/Ki67+) into active cycling. At day 14 of abstinence, there was a significant increase in the number of immature neurons (NeuroD1+) though no evidence of ectopic neurogenesis according to either NeuroD1 or Prox1 immunoreactivity. Altogether, these data suggest that alcohol dependence produces similar reactive increases in NPC proliferation and adult neurogenesis. Thus, reactive, adult neurogenesis may be a means of recovery for the hippocampus after alcohol dependence in females.

11.
Alcohol Clin Exp Res ; 45(10): 1908-1926, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34486128

RESUMO

Alcohol is one of the most widely used recreational substances worldwide, with drinking frequently initiated during adolescence. The developmental state of the adolescent brain makes it vulnerable to initiating alcohol use, often in high doses, and particularly susceptible to alcohol-induced brain changes. Microglia, the brain parenchymal macrophages, have been implicated in mediating some of these effects, though the role that these cells play in the progression from alcohol drinking to dependence remains unclear. Microglia are uniquely positioned to sense and respond to central nervous system insult, and are now understood to exhibit innate immune memory, or "priming," altering their future functional responses based on prior exposures. In alcohol use disorders (AUDs), the role of microglia is debated. Whereas microglial activation can be pathogenic, contributing to neuroinflammation, tissue damage, and behavioral changes, or protective, it can also engage protective functions, providing support and mediating the resolution of damage. Understanding the role of microglia in adolescent AUDs is complicated by the fact that microglia are thought to be involved in developmental processes such as synaptic refinement and myelination, which underlie the functional maturation of multiple brain systems in adolescence. Thus, the role microglia play in the impact of alcohol use in adolescence is likely multifaceted. Long-term sequelae may be due to a failure to recover from EtOH-induced tissue damage, altered neurodevelopmental trajectories, and/or persistent changes to microglial responsivity and function. Here, we review critically the literature surrounding the effects of alcohol on microglia in models of adolescent alcohol misuse. We attempt to disentangle what is known about microglia from other neuroimmune effectors, to which we apply recent discoveries on the role of microglia in development and plasticity. Considered altogether, these studies challenge assumptions that proinflammatory microglia drive addiction. Alcohol priming microglia and thereby perturbing their homeostatic roles in neurodevelopment, especially during critical periods of plasticity such as adolescence, may have more serious implications for the neuropathogenesis of AUDs in adolescents.


Assuntos
Alcoolismo/etiologia , Depressores do Sistema Nervoso Central/efeitos adversos , Etanol/efeitos adversos , Microglia/efeitos dos fármacos , Consumo de Álcool por Menores , Humanos , Transtornos do Neurodesenvolvimento/induzido quimicamente , Psicologia do Adolescente
12.
Brain Sci ; 11(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921189

RESUMO

Abstinence after alcohol dependence leads to structural and functional recovery in many regions of the brain, especially the hippocampus. Significant increases in neural stem cell (NSC) proliferation and subsequent "reactive neurogenesis" coincides with structural recovery in hippocampal dentate gyrus (DG). However, whether these reactively born neurons are integrated appropriately into neural circuits remains unknown. Therefore, adult male rats were exposed to a binge model of alcohol dependence. On day 7 of abstinence, the peak of reactive NSC proliferation, rats were injected with bromodeoxyuridine (BrdU) to label dividing cells. After six weeks, rats underwent Morris Water Maze (MWM) training then were sacrificed ninety minutes after the final training session. Using fluorescent immunohistochemistry for c-Fos (neuronal activation), BrdU, and Neuronal Nuclei (NeuN), we investigated whether neurons born during reactive neurogenesis were incorporated into a newly learned MWM neuronal ensemble. Prior alcohol exposure increased the number of BrdU+ cells and newborn neurons (BrdU+/NeuN+ cells) in the DG versus controls. However, prior ethanol exposure had no significant impact on MWM-induced c-Fos expression. Despite increased BrdU+ neurons, no difference in the number of activated newborn neurons (BrdU+/c-Fos+/NeuN+) was observed. These data suggest that neurons born during alcohol-induced reactive neurogenesis are functionally integrated into hippocampal circuitry.

13.
Alcohol Clin Exp Res ; 45(1): 105-116, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33164228

RESUMO

BACKGROUND: Activation of the innate immune system may play a role in the development of alcohol use disorders (AUDs), which often originate with adolescent alcohol abuse. A key player in the innate immune system is microglia, the activation of which occurs along a spectrum from proinflammatory, or M1-like, to anti-inflammatory, or M2-like, phenotypes. METHODS: Adolescent, male rats were gavaged with ethanol (EtOH) or isocaloric control diet every 8 hours for 4 days and then sacrificed at 0, 2, 7, and 14 days later. Microglia were isolated from the entorhinal cortex and hippocampus by Percoll gradient centrifugation, labeled with surface antigens for activation, and analyzed by flow cytometry. Polarization states of microglia, defined as CD11b+ CD45low cells, were determined by the expression of M1 surface markers, major histocompatibility complex (MHC) II, CD32, and CD86, and M2 surface marker, CD206 (mannose receptor). Cytokine gene expression was measured by reverse transcriptase polymerase chain reaction. RESULTS: Isolated cells were a highly enriched population (>95% pure) of microglia/macrophages according to CD11b immunoreactivity. EtOH rats showed the most dramatic increases in microglia activation markers CD11b and CD45, and M1 (MHC-II) and M2 (CD206) markers at T2, when additional M1 markers CD86 and CD32 were also increased. Surprisingly, proinflammatory gene expression of CCL2, IL-1ß, IL-6, and TNF-α generally was decreased at all time points in EtOH rats except for IL-6 which was increased at T0 and TNF-α which was not changed at T0 in either region. Simultaneously, BDNF expression was increased at T2 and T7, while IGF1 and TGF-ß gene expression was decreased. Arginase was also increased at T0 in hippocampus, but not changed by alcohol otherwise. CONCLUSIONS: These data show that microglia phenotype after alcohol dependence is not a simple M1 or M2 classification, though more indicators of an anti-inflammatory phenotype were observed. Determining microglia phenotype is critical for understanding their role in the development of AUDs.


Assuntos
Alcoolismo/patologia , Consumo Excessivo de Bebidas Alcoólicas/patologia , Córtex Entorrinal/patologia , Hipocampo/patologia , Microglia/patologia , Fatores Etários , Animais , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Citocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Microglia/metabolismo , Fenótipo , Ratos Sprague-Dawley
14.
Front Neuroanat ; 14: 52, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903737

RESUMO

Microglia are dynamic cells that have roles in neuronal plasticity as well as in recovery responses following neuronal injury. Although many hypothesize that hyperactivation of microglia contributes to alcohol-induced neuropathology, in other neurodegenerative conditions disruption of normal microglial processes also contributes to neuronal loss, particularly as microglia become dystrophic or dysfunctional. Based on the observation of a striking, abnormal morphology in microglia during binge-like ethanol exposure, the present study investigated the impact of excessive ethanol exposure on microglia number and dystrophic morphology in a model of alcohol dependence that includes neurodegeneration in both adult and adolescent rats. Following 2- and 4-day binge ethanol exposure, the number of microglia was decreased in the hippocampus and the perirhinal and entorhinal cortices of both adult and adolescent rats. Furthermore, a significant number of microglia with a dystrophic morphology were observed in ethanol-exposed tissue, accompanied by a significant decrease in brain-derived neurotrophic factor (BDNF) expression in the hippocampus. Together these findings suggest another means by which microglia may contribute to alcohol-induced neurodegeneration, specifically dystrophic microglia and/or loss of microglia may disrupt homeostatic and recovery mechanisms. These results demonstrate that microglia also degenerate with excessive alcohol exposure, which has important implications for understanding the role of microglia-and specifically their contributions to plasticity and neuronal survival-in neurodegenerative disease.

15.
Drug Alcohol Depend ; 212: 107988, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32387915

RESUMO

BACKGROUND: As alcohol and nicotine use disorders are entwined, it may be possible to develop a single medication to treat both. We previously developed a model for ethanol (EtOH) and nicotine co-use in female selectively bred alcohol-preferring (P) rats. To model co-use in a genetically diverse population, we adapted the model to outbred Sprague-Dawley rats of both sexes and assessed the effect of drug pretreatments. METHODS: In phase 1, rats were trained in a 2-bottle choice between water and a sweetened or unsweetened EtOH solution in operant chambers. In phase 2, rats were trained in nicotine self-administration under an increasing fixed ratio (FR) schedule with 2 bottles containing water or saccharin-sweetened EtOH also available. In phase 3, rats were pretreated with EtOH (0.5, 1.5 g/kg), naltrexone (0.3 mg/kg), nicotine (0.2, 0.6 mg/kg), varenicline (3.0 mg/kg) or vehicle before the session. RESULTS: Sweetening the EtOH solution was required to obtain pharmacologically relevant levels of consumption in Phase 1, with males showing increased sweetened EtOH preference compared to females. In Phase 2, increasing the FR requirement for nicotine decreased nicotine infusions, but increased EtOH consumption. In Phase 3, EtOH, naltrexone, and nicotine failed to alter EtOH consumption; however, varenicline decreased both EtOH and nicotine intake. CONCLUSIONS: The co-use model was successfully adapted to Sprague-Dawley rats by adding saccharin to the EtOH solution. In contrast to previous results in P rats, varenicline reduced both EtOH and nicotine intake, indicating it may be a useful monotherapy for co-use in a genetically diverse population.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Etanol/administração & dosagem , Naltrexona/uso terapêutico , Nicotina/administração & dosagem , Tabagismo/tratamento farmacológico , Vareniclina/uso terapêutico , Dissuasores de Álcool/uso terapêutico , Consumo de Bebidas Alcoólicas/psicologia , Animais , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Autoadministração , Agentes de Cessação do Hábito de Fumar/uso terapêutico , Tabagismo/psicologia
16.
Brain Plast ; 6(1): 83-101, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33680848

RESUMO

BACKGROUND: The excessive alcohol drinking that occurs in alcohol use disorder (AUD) causes neurodegeneration in regions such as the hippocampus, though recovery may occur after a period of abstinence. Mechanisms of recovery are not clear, though reactive neurogenesis has been observed in the hippocampal dentate gyrus following alcohol dependence and correlates to recovery of granule cell number. OBJECTIVE: We investigated the role of neurons born during reactive neurogenesis in the recovery of hippocampal learning behavior after 4-day binge alcohol exposure, a model of an AUD. We hypothesized that reducing reactive neurogenesis would impair functional recovery. METHODS: Adult male rats were subjected to 4-day binge alcohol exposure and two approaches were tested to blunt reactive adult neurogenesis, acute doses of alcohol or the chemotherapy drug, temozolomide (TMZ). RESULTS: Acute 5 g/kg doses of EtOH gavaged T6 and T7 days post binge did not inhibit significantly the number of Bromodeoxyuridine-positive (BrdU+) proliferating cells in EtOH animals receiving 5 g/kg EtOH versus controls. A single cycle of TMZ inhibited reactive proliferation (BrdU+ cells) and neurogenesis (NeuroD+ cells) to that of controls. However, despite this blunting of reactive neurogenesis to basal levels, EtOH-TMZ rats were not impaired in their recovery of acquisition of the Morris water maze (MWM), learning similarly to all other groups 35 days after 4-day binge exposure. CONCLUSIONS: These studies show that TMZ is effective in decreasing reactive proliferation/neurogenesis following 4-day binge EtOH exposure, and baseline levels of adult neurogenesis are sufficient to allow recovery of hippocampal function.

18.
Prog Mol Biol Transl Sci ; 167: 179-221, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31601404

RESUMO

Alcohol use disorder (AUD) is a chronic relapsing disorder with wide-ranging health consequences. Alcohol targets the central nervous system producing neurodegeneration and subsequent cognitive and behavioral deficits, but the mechanisms behind these effects remain unclear. Recently, evidence has been mounting for the role of neuroimmune activation in the pathogenesis of AUDs, but our nascent state of knowledge about the interaction of alcohol with the neuroimmune system supports that the relationship is complicated. As the resident macrophage of the central nervous system, microglia are a central focus. Human and animal research on the interplay between microglia and alcohol in AUDs has proven to be complex, and though early research focused on a pro-inflammatory phenotype of microglia, the anti-inflammatory and homeostatic roles of microglia must be considered. How these new roles for microglia should be incorporated into our thinking about the neuroimmune system in AUDs is discussed in the context of developing novel pharmacotherapies for AUDs.


Assuntos
Alcoolismo/patologia , Anti-Inflamatórios/uso terapêutico , Etanol/toxicidade , Microglia/patologia , Alcoolismo/tratamento farmacológico , Alcoolismo/etiologia , Animais , Depressores do Sistema Nervoso Central/toxicidade , Humanos , Microglia/efeitos dos fármacos
19.
Drug Alcohol Depend ; 193: 154-161, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30384323

RESUMO

Background Although pharmacotherapies are available for alcohol (EtOH) or tobacco use disorders individually, it may be possible to develop a single pharmacotherapy to treat heavy drinking tobacco smokers by capitalizing on the commonalities in their mechanisms of action. Methods Female alcohol-preferring (P) rats were trained for EtOH drinking and nicotine self-administration in two phases: (1) EtOH alone (0 vs. 15% EtOH, 2-bottle choice) and (2) concomitant access, during which EtOH access continued with access to nicotine (0.03 mg/kg/infusion, i.v.) using a 2-lever choice procedure (active vs. inactive lever) in which the fixed ratio (FR) requirement was gradually increased to FR30. When stable co-use was obtained, rats were pretreated with varying doses of naltrexone, varenicline, or r-bPiDI, an α6ß2* subtype-selective nicotinic acetylcholine receptor antagonist shown previously to reduce nicotine self-administration. Results While EtOH intake was initially suppressed in phase 2 (co-use), pharmacologically relevant intake for both substances was achieved by raising the "price" of nicotine to FR30. In phase 2, naltrexone decreased EtOH and water consumption but not nicotine intake; in contrast, naltrexone in phase 1 (EtOH only) did not significantly alter EtOH intake. Varenicline and r-bPiDI in phase 2 both decreased nicotine self-administration and inactive lever pressing, but neither altered EtOH or water consumption. Conclusions These results indicate that increasing the "price" of nicotine increases EtOH intake during co-use. Additionally, the efficacy of naltrexone, varenicline, and r-bPiDI was specific to either EtOH or nicotine, with no efficacy for co-use. Nevertheless, future studies on combining these treatments may reveal synergistic efficacy.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Naltrexona/uso terapêutico , Picolinas/uso terapêutico , Compostos de Piridínio/uso terapêutico , Tabagismo/tratamento farmacológico , Vareniclina/uso terapêutico , Dissuasores de Álcool/uso terapêutico , Animais , Modelos Animais de Doenças , Etanol/administração & dosagem , Feminino , Nicotina/administração & dosagem , Antagonistas Nicotínicos/farmacologia , Ratos , Autoadministração , Agentes de Cessação do Hábito de Fumar/uso terapêutico , Tabagismo/complicações , Resultado do Tratamento
20.
Psychopharmacology (Berl) ; 235(5): 1439-1453, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29455292

RESUMO

RATIONALE: Co-users of alcohol and nicotine are the largest group of polysubstance users worldwide. Commonalities in mechanisms of action for ethanol (EtOH) and nicotine proposes the possibility of developing a single pharmacotherapeutic to treat co-use. OBJECTIVES: Toward developing a preclinical model of co-use, female alcohol-preferring (P) rats were trained for voluntary EtOH drinking and i.v. nicotine self-administration in three phases: (1) EtOH alone (0 vs. 15%, two-bottle choice), (2) nicotine alone (0.03 mg/kg/infusion, active vs. inactive lever), and (3) concurrent access to both EtOH and nicotine. Using this model, we examined the effects of (1) varenicline, a nicotinic acetylcholine receptor (nAChR) partial agonist with high affinity for the α4ß2* subtype; (2) r-bPiDI, a subtype-selective antagonist at α6ß2* nAChRs; and (3) (R)-modafinil, an atypical inhibitor of the dopamine transporter (DAT). RESULTS: In phases 1 and 2, pharmacologically relevant intake of EtOH and nicotine was achieved. In the concurrent access phase (phase 3), EtOH consumption decreased while nicotine intake increased relative to phases 1 and 2. For drug pretreatments, in the EtOH access phase (phase 1), (R)-modafinil (100 mg/kg) decreased EtOH consumption, with no effect on water consumption. In the concurrent access phase, varenicline (3 mg/kg), r-bPiDI (20 mg/kg), and (R)-modafinil (100 mg/kg) decreased nicotine self-administration but did not alter EtOH consumption, water consumption, or inactive lever pressing. CONCLUSIONS: These results indicate that therapeutics which may be useful for smoking cessation via selective inhibition of α4ß2* or α6ß2* nAChRs, or DAT inhibition, may not be sufficient to treat EtOH and nicotine co-use.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Etanol/administração & dosagem , Modafinila/farmacologia , Nicotina/administração & dosagem , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Vareniclina/farmacologia , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Consumo de Bebidas Alcoólicas/psicologia , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/fisiologia , Relação Dose-Resposta a Droga , Feminino , Modafinila/uso terapêutico , Agonistas Nicotínicos/uso terapêutico , Antagonistas Nicotínicos/uso terapêutico , Ratos , Receptores Nicotínicos/fisiologia , Autoadministração , Abandono do Hábito de Fumar/métodos , Vareniclina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...