Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 220(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34633413

RESUMO

The cavin proteins are essential for caveola biogenesis and function. Here, we identify a role for the muscle-specific component, Cavin4, in skeletal muscle T-tubule development by analyzing two vertebrate systems, mouse and zebrafish. In both models, Cavin4 localized to T-tubules, and loss of Cavin4 resulted in aberrant T-tubule maturation. In zebrafish, which possess duplicated cavin4 paralogs, Cavin4b was shown to directly interact with the T-tubule-associated BAR domain protein Bin1. Loss of both Cavin4a and Cavin4b caused aberrant accumulation of interconnected caveolae within the T-tubules, a fragmented T-tubule network enriched in Caveolin-3, and an impaired Ca2+ response upon mechanical stimulation. We propose a role for Cavin4 in remodeling the T-tubule membrane early in development by recycling caveolar components from the T-tubule to the sarcolemma. This generates a stable T-tubule domain lacking caveolae that is essential for T-tubule function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sarcolema/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Cavéolas/metabolismo , Linhagem Celular , Embrião não Mamífero/metabolismo , Imageamento Tridimensional , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/ultraestrutura , Ligação Proteica , Sarcolema/ultraestrutura , Peixe-Zebra/embriologia
2.
J Cell Biol ; 210(5): 833-49, 2015 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-26323694

RESUMO

Dysfunction of caveolae is involved in human muscle disease, although the underlying molecular mechanisms remain unclear. In this paper, we have functionally characterized mouse and zebrafish models of caveolae-associated muscle disease. Using electron tomography, we quantitatively defined the unique three-dimensional membrane architecture of the mature muscle surface. Caveolae occupied around 50% of the sarcolemmal area predominantly assembled into multilobed rosettes. These rosettes were preferentially disassembled in response to increased membrane tension. Caveola-deficient cavin-1(-/-) muscle fibers showed a striking loss of sarcolemmal organization, aberrant T-tubule structures, and increased sensitivity to membrane tension, which was rescued by muscle-specific Cavin-1 reexpression. In vivo imaging of live zebrafish embryos revealed that loss of muscle-specific Cavin-1 or expression of a dystrophy-associated Caveolin-3 mutant both led to sarcolemmal damage but only in response to vigorous muscle activity. Our findings define a conserved and critical role in mechanoprotection for the unique membrane architecture generated by the caveolin-cavin system.


Assuntos
Caveolinas/metabolismo , Mecanotransdução Celular , Proteínas de Membrana/metabolismo , Atividade Motora/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Proteínas de Ligação a RNA/metabolismo , Estresse Mecânico , Animais , Caveolinas/genética , Tomografia com Microscopia Eletrônica , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Distrofias Musculares/genética , Distrofias Musculares/patologia , Proteínas de Ligação a RNA/genética , Sarcolema/genética , Sarcolema/patologia , Peixe-Zebra
3.
Cell Rep ; 4(2): 238-47, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23850288

RESUMO

Caveolae and caveolin-1 (CAV1) have been linked to several cellular functions. However, a model explaining their roles in mammalian tissues in vivo is lacking. Unbiased expression profiling in several tissues and cell types identified lipid metabolism as the main target affected by CAV1 deficiency. CAV1-/- mice exhibited impaired hepatic peroxisome proliferator-activated receptor α (PPARα)-dependent oxidative fatty acid metabolism and ketogenesis. Similar results were recapitulated in CAV1-deficient AML12 hepatocytes, suggesting at least a partial cell-autonomous role of hepatocyte CAV1 in metabolic adaptation to fasting. Finally, our experiments suggest that the hepatic phenotypes observed in CAV1-/- mice involve impaired PPARα ligand signaling and attenuated bile acid and FXRα signaling. These results demonstrate the significance of CAV1 in (1) hepatic lipid homeostasis and (2) nuclear hormone receptor (PPARα, FXRα, and SHP) and bile acid signaling.


Assuntos
Ácidos e Sais Biliares/metabolismo , Caveolina 1/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Animais , Camundongos , Oxirredução , Transdução de Sinais
4.
PLoS One ; 7(9): e46242, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049990

RESUMO

Caveolin-1 (CAV1) is an important regulator of adipose tissue homeostasis. In the present study we examined the impact of CAV1 deficiency on the properties of mouse adipose tissue both in vivo and in explant cultures during conditions of metabolic stress. In CAV1(-/-) mice fasting caused loss of adipose tissue mass despite a lack of hormone-sensitive lipase (HSL) phosphorylation. In addition, fasting resulted in increased macrophage infiltration, enhanced deposition of collagen, and a reduction in the level of the lipid droplet protein perilipin A (PLIN1a). Explant cultures of CAV1(-/-) adipose tissue also showed a loss of PLIN1a during culture, enhanced secretion of IL-6, increased release of lactate dehydrogenase, and demonstrated increased susceptibility to cell death upon collagenase treatment. Attenuated PKA-mediated signaling to HSL, loss of PLIN1a and increased secretion of IL-6 were also observed in adipose tissue explants of CAV1(+/+) mice with diet-induced obesity. Together these results suggest that while alterations in adipocyte lipid droplet biology support adipose tissue metabolism in the absence of PKA-mediated pro-lipolytic signaling in CAV1(-/-) mice, the tissue is intrinsically unstable resulting in increased susceptibility to cell death, which we suggest underlies the development of fibrosis and inflammation during periods of metabolic stress.


Assuntos
Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Caveolina 1/metabolismo , Fibrose/metabolismo , Absorciometria de Fóton , Tecido Adiposo Branco/citologia , Animais , Western Blotting , Peso Corporal/genética , Peso Corporal/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caveolina 1/deficiência , Caveolina 1/genética , Morte Celular/genética , Morte Celular/fisiologia , Fibrose/genética , Imuno-Histoquímica , Interleucina-6/metabolismo , Lipólise/genética , Lipólise/fisiologia , Masculino , Camundongos , Camundongos Knockout , Perilipina-1 , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação
5.
Methods Cell Biol ; 96: 425-42, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20869533

RESUMO

The zebrafish is a powerful vertebrate system with great advantages for both forward and reverse genetic screens and as a model for human disease conditions. Light microscopy has been used extensively to study zebrafish development but less frequently have these studies been combined with ultrastructural information. Zebrafish embryos are ideal for electron microscopy (EM) with a single transverse section containing many different cell types and tissues. However, conventional methods of EM do not provide optimal preservation of all tissues and are usually incompatible with immunolabelling and visualisation of expressed fluorescently tagged proteins. Here we examine methods that overcome these problems. We summarise a range of methods, applicable to the ultrastructural analysis of zebrafish embryos, including methods for fast freezing and processing of zebrafish embryos. These methods preserve antigenicity, ultrastructure and GFP fluorescence even after embedding in resin. In addition, they are compatible with electron tomography. These methods provide a new set of research tools that provide an additional level of information, complementing current methods for study of this widely used model system.


Assuntos
Embrião não Mamífero/ultraestrutura , Microscopia Eletrônica/métodos , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Animais , Criopreservação/métodos , Tomografia com Microscopia Eletrônica/métodos , Técnicas de Preparação Histocitológica/métodos , Humanos , Microscopia Eletrônica/instrumentação , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos
6.
J Cell Biol ; 185(7): 1259-73, 2009 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-19546242

RESUMO

Polymerase I and transcript release factor (PTRF)/Cavin is a cytoplasmic protein whose expression is obligatory for caveola formation. Using biochemistry and fluorescence resonance energy transfer-based approaches, we now show that a family of related proteins, PTRF/Cavin-1, serum deprivation response (SDR)/Cavin-2, SDR-related gene product that binds to C kinase (SRBC)/Cavin-3, and muscle-restricted coiled-coil protein (MURC)/Cavin-4, forms a multiprotein complex that associates with caveolae. This complex can constitutively assemble in the cytosol and associate with caveolin at plasma membrane caveolae. Cavin-1, but not other cavins, can induce caveola formation in a heterologous system and is required for the recruitment of the cavin complex to caveolae. The tissue-restricted expression of cavins suggests that caveolae may perform tissue-specific functions regulated by the composition of the cavin complex. Cavin-4 is expressed predominantly in muscle, and its distribution is perturbed in human muscle disease associated with Caveolin-3 dysfunction, identifying Cavin-4 as a novel muscle disease candidate caveolar protein.


Assuntos
Caveolinas/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Isoformas de Proteínas/metabolismo , Células 3T3-L1/metabolismo , Células 3T3-L1/ultraestrutura , Sequência de Aminoácidos , Animais , Cavéolas/metabolismo , Cavéolas/ultraestrutura , Caveolinas/genética , Humanos , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas Musculares/classificação , Proteínas Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Filogenia , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Proteínas de Ligação a RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sarcolema/metabolismo , Sarcolema/ultraestrutura , Alinhamento de Sequência
7.
Traffic ; 10(2): 131-6, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19054388

RESUMO

The zebrafish is a powerful vertebrate system for cell and developmental studies. In this study, we have optimized methods for fast freezing and processing of zebrafish embryos for electron microscopy (EM). We show that in the absence of primary chemical fixation, excellent ultrastructure, preservation of green fluorescent protein (GFP) fluorescence, immunogold labelling and electron tomography can be obtained using a single technique involving high-pressure freezing and embedding in Lowicryl resins at low temperature. As well as being an important new tool for zebrafish research, the maintenance of GFP fluorescence after fast freezing, freeze substitution and resin embedding will be of general use for correlative light and EM of biological samples.


Assuntos
Criopreservação/métodos , Microscopia/métodos , Tomografia/métodos , Peixe-Zebra/embriologia , Animais
8.
Gastroenterology ; 136(3): 902-11, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19073184

RESUMO

BACKGROUND & AIMS: Zebrafish mutants generated by ethylnitrosourea-mutagenesis provide a powerful tool for dissecting the genetic regulation of developmental processes, including organogenesis. One zebrafish mutant, "flotte lotte" (flo), displays striking defects in intestinal, liver, pancreas, and eye formation at 78 hours postfertilization (hpf). In this study, we sought to identify the underlying mutated gene in flo and link the genetic lesion to its phenotype. METHODS: Positional cloning was employed to map the flo mutation. Subcellular characterization of flo embryos was achieved using histology, immunocytochemistry, bromodeoxyuridine incorporation analysis, and confocal and electron microscopy. RESULTS: The molecular lesion in flo is a nonsense mutation in the elys (embryonic large molecule derived from yolk sac) gene, which encodes a severely truncated protein lacking the Elys C-terminal AT-hook DNA binding domain. Recently, the human ELYS protein has been shown to play a critical, and hitherto unsuspected, role in nuclear pore assembly. Although elys messenger RNA (mRNA) is expressed broadly during early zebrafish development, widespread early defects in flo are circumvented by the persistence of maternally expressed elys mRNA until 24 hpf. From 72 hpf, elys mRNA expression is restricted to proliferating tissues, including the intestinal epithelium, pancreas, liver, and eye. Cells in these tissues display disrupted nuclear pore formation; ultimately, intestinal epithelial cells undergo apoptosis. CONCLUSIONS: Our results demonstrate that Elys regulates digestive organ formation.


Assuntos
Apoptose/fisiologia , Mucosa Intestinal/anormalidades , Mucosa Intestinal/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Poro Nuclear/patologia , Proteínas de Peixe-Zebra/genética , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Sistema Nervoso Entérico/anormalidades , Sistema Nervoso Entérico/patologia , Sistema Nervoso Entérico/fisiologia , Anormalidades do Olho/patologia , Anormalidades do Olho/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento , Mucosa Intestinal/patologia , Intestinos/anormalidades , Intestinos/patologia , Intestinos/fisiologia , Fígado/anormalidades , Fígado/patologia , Fígado/fisiologia , Microscopia Eletrônica , Poro Nuclear/fisiologia , Poro Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Pâncreas/anormalidades , Pâncreas/patologia , Pâncreas/fisiologia , Fenótipo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
9.
J Cell Sci ; 121(Pt 12): 2075-86, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18505796

RESUMO

Caveolae are an abundant feature of mammalian cells. Integral membrane proteins called caveolins drive the formation of caveolae but the precise mechanisms underlying caveola formation, and the origin of caveolae and caveolins during evolution, are unknown. Systematic evolutionary analysis shows conservation of genes encoding caveolins in metazoans. We provide evidence for extensive and ancient, local and genomic gene duplication, and classify distinct caveolin gene families. Vertebrate caveolin-1 and caveolin-3 isoforms, as well as an invertebrate (Apis mellifera, honeybee) caveolin, all form morphologically identical caveolae in caveolin-1-null mouse cells, demonstrating that caveola formation is a conserved feature of evolutionarily distant caveolins. However, coexpression of flotillin-1 and flotillin-2 did not cause caveola biogenesis in this system. In contrast to the other tested caveolins, C. elegans caveolin is efficiently transported to the plasma membrane but does not generate caveolae, providing evidence of diversity of function in the caveolin gene family. Using C. elegans caveolin as a template to generate hybrid caveolin constructs we now define domains of caveolin required for caveolae biogenesis. These studies lead to a model for caveola formation and novel insights into the evolution of caveolin function.


Assuntos
Caenorhabditis elegans , Cavéolas/fisiologia , Caveolinas/metabolismo , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Cavéolas/ultraestrutura , Caveolinas/deficiência , Caveolinas/genética , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Microscopia Confocal , Dados de Sequência Molecular , Biogênese de Organelas , Filogenia , Isoformas de Proteínas/genética , Sinais Direcionadores de Proteínas , Transporte Proteico/genética , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Transfecção
10.
Cell ; 132(1): 113-24, 2008 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-18191225

RESUMO

Caveolae are abundant cell-surface organelles involved in lipid regulation and endocytosis. We used comparative proteomics to identify PTRF (also called Cav-p60, Cavin) as a putative caveolar coat protein. PTRF-Cavin selectively associates with mature caveolae at the plasma membrane but not Golgi-localized caveolin. In prostate cancer PC3 cells, and during development of zebrafish notochord, lack of PTRF-Cavin expression correlates with lack of caveolae, and caveolin resides on flat plasma membrane. Expression of PTRF-Cavin in PC3 cells is sufficient to cause formation of caveolae. Knockdown of PTRF-Cavin reduces caveolae density, both in mammalian cells and in the zebrafish. Caveolin remains on the plasma membrane in PTRF-Cavin knockdown cells but exhibits increased lateral mobility and accelerated lysosomal degradation. We conclude that PTRF-Cavin is required for caveola formation and sequestration of mobile caveolin into immobile caveolae.


Assuntos
Cavéolas/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Membrana/metabolismo , Animais , Abelhas , Cavéolas/ultraestrutura , Caveolina 1/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/ultraestrutura , Células Cultivadas , Sequência Conservada , Cricetinae , Citoplasma/ultraestrutura , Evolução Molecular , Fibroblastos , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Células NIH 3T3 , Notocorda/embriologia , Notocorda/metabolismo , Notocorda/ultraestrutura , Proteínas de Ligação a RNA , Especificidade da Espécie , Peixe-Zebra
11.
J Cell Sci ; 120(Pt 13): 2151-61, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17550965

RESUMO

Caveolae have been linked to diverse cellular functions and to many disease states. In this study we have used zebrafish to examine the role of caveolin-1 and caveolae during early embryonic development. During development, expression is apparent in a number of tissues including Kupffer's vesicle, tailbud, intersomite boundaries, heart, branchial arches, pronephric ducts and periderm. Particularly strong expression is observed in the sensory organs of the lateral line, the neuromasts and in the notochord where it overlaps with expression of caveolin-3. Morpholino-mediated downregulation of Cav1alpha caused a dramatic inhibition of neuromast formation. Detailed ultrastructural analysis, including electron tomography of the notochord, revealed that the central regions of the notochord has the highest density of caveolae of any embryonic tissue comparable to the highest density observed in any vertebrate tissue. In addition, Cav1alpha downregulation caused disruption of the notochord, an effect that was enhanced further by Cav3 knockdown. These results indicate an essential role for caveolin and caveolae in this vital structural and signalling component of the embryo.


Assuntos
Cavéolas/metabolismo , Caveolina 1/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Notocorda/embriologia , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/embriologia , Animais , Cavéolas/ultraestrutura , Caveolina 3/biossíntese , Caveolina 3/genética , Coração/embriologia , Notocorda/ultraestrutura , Transdução de Sinais/fisiologia , Somitos/metabolismo , Somitos/ultraestrutura , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
12.
Science ; 313(5793): 1628-32, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16973879

RESUMO

Liver regeneration is an orchestrated cellular response that coordinates cell activation, lipid metabolism, and cell division. We found that caveolin-1 gene-disrupted mice (cav1-/- mice) exhibited impaired liver regeneration and low survival after a partial hepatectomy. Hepatocytes showed dramatically reduced lipid droplet accumulation and did not advance through the cell division cycle. Treatment of cav1-/- mice with glucose (which is a predominant energy substrate when compared to lipids) drastically increased survival and reestablished progression of the cell cycle. Thus, caveolin-1 plays a crucial role in the mechanisms that coordinate lipid metabolism with the proliferative response occurring in the liver after cellular injury.


Assuntos
Caveolina 1/fisiologia , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Regeneração Hepática , Animais , Cavéolas/metabolismo , Caveolina 1/genética , Ciclo Celular , Divisão Celular , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Glucose/administração & dosagem , Hepatectomia , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos/citologia , Lipídeos/sangue , Fígado/metabolismo , Fígado/ultraestrutura , Masculino , Camundongos , Fosforilação , RNA Interferente Pequeno , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Triglicerídeos/sangue , Triglicerídeos/metabolismo
13.
J Biol Chem ; 280(51): 42325-35, 2005 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-16207721

RESUMO

Rab GTPases are crucial regulators of membrane traffic. Here we have examined a possible association of Rab proteins with lipid droplets (LDs), neutral lipid-containing organelles surrounded by a phospholipid monolayer, also known as lipid bodies, which have been traditionally considered relatively inert storage organelles. Although we found close apposition between LDs and endosomal compartments labeled by expressed Rab5, Rab7, or Rab11 constructs, there was no detectable labeling of the LD surface itself by these Rab proteins. In contrast, GFP-Rab18 localized to LDs and immunoelectron microscopy showed direct association with the monolayer surface. Green fluorescent protein (GFP)-Rab18-labeled LDs underwent oscillatory movements in a localized area as well as sporadic, rapid, saltatory movements both in the periphery of the cell and toward the perinuclear region. In both adipocytes and non-adipocyte cell lines Rab18 localized to a subset of LDs. To gain insights into this specific localization, Rab18 was co-expressed with Cav3DGV, a truncation mutant of caveolin-3 shown to inhibit the catabolism and motility of lipid droplets. GFP-Rab18 and mRFP-Cav3DGV labeled mutually exclusive subpopulations of LDs. Moreover, in 3T3-L1 adipocytes, stimulation of lipolysis increased the localization of Rab18 to LDs, an effect reversed by beta-adrenergic antagonists. These results show that a Rab protein localizes directly to the monolayer surface of LDs. In addition, association with the LD surface was increased following stimulation of lipolysis and inhibited by a caveolin mutant suggesting that recruitment of Rab18 is regulated by the metabolic state of individual LDs.


Assuntos
Metabolismo dos Lipídeos , Proteínas rab de Ligação ao GTP/metabolismo , Células 3T3-L1 , Animais , Sequência de Bases , Primers do DNA , Proteínas de Fluorescência Verde/metabolismo , Lipólise , Camundongos , Microscopia Eletrônica
14.
Hum Mol Genet ; 14(13): 1727-43, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15888488

RESUMO

Caveolae are an abundant feature of many animal cells. However, the exact function of caveolae remains unclear. We have used the zebrafish, Danio rerio, as a system to understand caveolae function focusing on the muscle-specific caveolar protein, caveolin-3 (Cav3). We have identified caveolin-1 (alpha and beta), caveolin-2 and Cav3 in the zebrafish. Zebrafish Cav3 has 72% identity to human CAV3, and the amino acids altered in human muscle diseases are conserved in the zebrafish protein. During embryonic development, cav3 expression is apparent by early segmentation stages in the first differentiating muscle precursors, the adaxial cells and slightly later in the notochord. cav3 expression appears in the somites during mid-segmentation stages and then later in the pectoral fins and facial muscles. Cav3 and caveolae are located along the entire sarcolemma of late stage embryonic muscle fibers, whereas beta-dystroglycan is restricted to the muscle fiber ends. Down-regulation of Cav3 expression causes gross muscle abnormalities and uncoordinated movement. Ultrastructural analysis of isolated muscle fibers reveals defects in myoblast fusion and disorganized myofibril and membrane systems. Expression of the zebrafish equivalent to a human muscular dystrophy mutant, CAV3P104L, causes severe disruption of muscle differentiation. In addition, knockdown of Cav3 resulted in a dramatic up-regulation of eng1a expression resulting in an increase in the number of muscle pioneer-like cells adjacent to the notochord. These studies provide new insights into the role of Cav3 in muscle development and demonstrate its requirement for correct intracellular organization and myoblast fusion.


Assuntos
Caveolinas/metabolismo , Músculo Esquelético/embriologia , Mioblastos Esqueléticos/metabolismo , Miofibrilas/metabolismo , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Caveolina 3 , Caveolinas/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Fusão Celular , Embrião não Mamífero/embriologia , Humanos , Dados de Sequência Molecular , Músculo Esquelético/ultraestrutura , Mioblastos Esqueléticos/ultraestrutura , Miofibrilas/genética , Miofibrilas/ultraestrutura , Peixe-Zebra/genética
15.
J Cell Biol ; 168(3): 465-76, 2005 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-15668297

RESUMO

Using quantitative light microscopy and a modified immunoelectron microscopic technique, we have characterized the entry pathway of the cholera toxin binding subunit (CTB) in primary embryonic fibroblasts. CTB trafficking to the Golgi complex was identical in caveolin-1null (Cav1-/-) mouse embryonic fibroblasts (MEFs) and wild-type (WT) MEFs. CTB entry in the Cav1-/- MEFs was predominantly clathrin and dynamin independent but relatively cholesterol dependent. Immunoelectron microscopy was used to quantify budded and surface-connected caveolae and to identify noncaveolar endocytic vehicles. In WT MEFs, a small fraction of the total Cav1-positive structures were shown to bud from the plasma membrane (2% per minute), and budding increased upon okadaic acid or lactosyl ceramide treatment. However, the major carriers involved in initial entry of CTB were identified as uncoated tubular or ring-shaped structures. These carriers contained GPI-anchored proteins and fluid phase markers and represented the major vehicles mediating CTB uptake in both WT and caveolae-null cells.


Assuntos
Caveolinas/fisiologia , Vesículas Revestidas/fisiologia , Endocitose/fisiologia , Vesículas Transportadoras/fisiologia , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Autoantígenos , Proteínas de Ligação ao Cálcio/genética , Cavéolas/fisiologia , Cavéolas/ultraestrutura , Caveolina 1 , Caveolinas/genética , Caveolinas/metabolismo , Células Cultivadas , Toxina da Cólera/metabolismo , Colesterol/deficiência , Colesterol/fisiologia , Clatrina/fisiologia , Vesículas Revestidas/ultraestrutura , Dextranos/metabolismo , Dinaminas/genética , Dinaminas/fisiologia , Embrião de Mamíferos/citologia , Endocitose/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Fibroblastos/ultraestrutura , Glicosilfosfatidilinositóis/metabolismo , Complexo de Golgi/química , Complexo de Golgi/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Lactosilceramidas/farmacologia , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Ácido Okadáico/farmacologia , Fosfoproteínas/genética , Pinocitose/fisiologia , Gravidez , Transporte Proteico/fisiologia , Transfecção , Transferrina/metabolismo , Vesículas Transportadoras/ultraestrutura
16.
J Biol Chem ; 279(35): 36828-40, 2004 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-15199055

RESUMO

The staggerer mice carry a deletion in the RORalpha gene and have a prolonged humoral response, overproduce inflammatory cytokines, and are immunodeficient. Furthermore, the staggerer mice display lowered plasma apoA-I/-II, decreased plasma high density lipoprotein cholesterol and triglycerides, and develop hypo-alpha-lipoproteinemia and atherosclerosis. However, relatively little is known about RORalpha in the context of target tissues, target genes, and lipid homeostasis. For example, RORalpha is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for approximately 40% of total body weight and 50% of energy expenditure. This lean tissue is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. In particular, the role of RORalpha in skeletal muscle metabolism has not been investigated, and the contribution of skeletal muscle to the ROR-/- phenotype has not been resolved. We utilize ectopic dominant negative RORalpha expression in skeletal muscle cells to understand the regulatory role of RORs in this major mass peripheral tissue. Exogenous dominant negative RORalpha expression in skeletal muscle cells represses the endogenous levels of RORalpha and -gamma mRNAs and ROR-dependent gene expression. Moreover, we observed attenuated expression of many genes involved in lipid homeostasis. Furthermore, we show that the muscle carnitine palmitoyltransferase-1 and caveolin-3 promoters are directly regulated by ROR and coactivated by p300 and PGC-1. This study implicates RORs in the control of lipid homeostasis in skeletal muscle. In conclusion, we speculate that ROR agonists would increase fatty acid catabolism in muscle and suggest selective activators of ROR may have therapeutic utility in the treatment of obesity and atherosclerosis.


Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Caveolinas/metabolismo , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Músculo Esquelético/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Transativadores/fisiologia , Animais , Arteriosclerose/patologia , Células COS , Caveolina 3 , Diferenciação Celular , Divisão Celular , Linhagem Celular , Proteína p300 Associada a E1A , Genes Dominantes , Glucose/metabolismo , Glutationa Transferase/metabolismo , Humanos , Camundongos , Músculo Esquelético/citologia , Mutagênese Sítio-Dirigida , Proteínas Nucleares/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares , Obesidade/patologia , Fenótipo , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , RNA/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transfecção
17.
J Biol Chem ; 277(20): 17944-9, 2002 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-11884389

RESUMO

Specific point mutations in caveolin-3, a predominantly muscle-specific member of the caveolin family, have been implicated in limb-girdle muscular dystrophy and in rippling muscle disease. We examined the effect of these mutations on caveolin-3 localization and function. Using two independent assay systems, Raf activation in fibroblasts and neurite extension in PC12 cells, we show that one of the caveolin-3 point mutants, caveolin-3-C71W, specifically inhibits signaling by activated H-Ras but not by K-Ras. To gain insights into the effect of the mutant protein on H-Ras signaling, we examined the localization of the mutant proteins in fibroblastic cells and in differentiating myotubes. Unlike the previously characterized caveolin-3-DGV mutant, the inhibitory caveolin-3-C71W mutant reached the plasma membrane and colocalized with wild type caveolins. In BHK cells, caveolin-3-C71W associated with caveolae and in differentiating muscle cells with the developing T-tubule system. In contrast, the caveolin-3-P104L mutant accumulated in the Golgi complex and had no effect on H-Ras-mediated Raf activation. Inhibition by caveolin-3-C71W was rescued by cholesterol addition, suggesting that the mutant protein perturbs cholesterol-rich raft domains. Thus, we have demonstrated that a naturally occurring caveolin-3 mutation can inhibit signaling involving cholesterol-sensitive raft domains.


Assuntos
Caveolinas/genética , Caveolinas/farmacologia , Colesterol/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Distrofias Musculares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Caveolina 3 , Linhagem Celular , Cricetinae , Genes ras , Complexo de Golgi/metabolismo , Músculos/metabolismo , Distrofias Musculares/genética , Células PC12 , Mutação Puntual , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...