Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurophotonics ; 8(2): 025002, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33842667

RESUMO

Significance: High-density diffuse optical tomography (HD-DOT) has been shown to approach the resolution and localization accuracy of blood oxygen level dependent-functional magnetic resonance imaging in the adult brain by exploiting densely spaced, overlapping samples of the probed tissue volume, but the technique has to date required large and cumbersome optical fiber arrays. Aim: To evaluate a wearable HD-DOT system that provides a comparable sampling density to large, fiber-based HD-DOT systems, but with vastly improved ergonomics. Approach: We investigated the performance of this system by replicating a series of classic visual stimulation paradigms, carried out in one highly sampled participant during 15 sessions to assess imaging performance and repeatability. Results: Hemodynamic response functions and cortical activation maps replicate the results obtained with larger fiber-based systems. Our results demonstrate focal activations in both oxyhemoglobin and deoxyhemoglobin with a high degree of repeatability observed across all sessions. A comparison with a simulated low-density array explicitly demonstrates the improvements in spatial localization, resolution, repeatability, and image contrast that can be obtained with this high-density technology. Conclusions: The system offers the possibility for minimally constrained, spatially resolved functional imaging of the human brain in almost any environment and holds particular promise in enabling neuroscience applications outside of the laboratory setting. It also opens up new opportunities to investigate populations unsuited to traditional imaging technologies.

2.
Neurophotonics ; 8(1): 015011, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33778094

RESUMO

Significance: Neonates are a highly vulnerable population. The risk of brain injury is greater during the first days and weeks after birth than at any other time of life. Functional neuroimaging that can be performed longitudinally and at the cot-side has the potential to improve our understanding of the evolution of multiple forms of neurological injury over the perinatal period. However, existing technologies make it very difficult to perform repeated and/or long-duration functional neuroimaging experiments at the cot-side. Aim: We aimed to create a modular, high-density diffuse optical tomography (HD-DOT) technology specifically for neonatal applications that is ultra-lightweight, low profile and provides high mechanical flexibility. We then sought to validate this technology using an anatomically accurate dynamic phantom. Approach: An advanced 10-layer rigid-flexible printed circuit board technology was adopted as the basis for the DOT modules, which allows for a compact module design that also provides the flexibility needed to conform to the curved infant scalp. Two module layouts were implemented: dual-hexagon and triple-hexagon. Using in-built board-to-board connectors, the system can be configured to provide a vast range of possible layouts. Using epoxy resin, thermochromic dyes, and MRI-derived 3D-printed moulds, we constructed an electrically switchable, anatomically accurate dynamic phantom. This phantom was used to quantify the imaging performance of our flexible, modular HD-DOT system. Results: Using one particular module configuration designed to cover the infant sensorimotor system, the device provided 36 source and 48 detector positions, and over 700 viable DOT channels per wavelength, ranging from 10 to ∼ 45 mm over an area of approximately 60 cm 2 . The total weight of this system is only 70 g. The signal changes from the dynamic phantom, while slow, closely simulated real hemodynamic response functions. Using difference images obtained from the phantom, the measured 3D localization error provided by the system at the depth of the cortex was in the of range 3 to 6 mm, and the lateral image resolution at the depth of the neonatal cortex is estimated to be as good as 10 to 12 mm. Conclusions: The HD-DOT system described is ultra-low weight, low profile, can conform to the infant scalp, and provides excellent imaging performance. It is expected that this device will make functional neuroimaging of the neonatal brain at the cot-side significantly more practical and effective.

3.
Neuroimage ; 225: 117490, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33157266

RESUMO

Studies of cortical function in the awake infant are extremely challenging to undertake with traditional neuroimaging approaches. Partly in response to this challenge, functional near-infrared spectroscopy (fNIRS) has become increasingly common in developmental neuroscience, but has significant limitations including resolution, spatial specificity and ergonomics. In adults, high-density arrays of near-infrared sources and detectors have recently been shown to yield dramatic improvements in spatial resolution and specificity when compared to typical fNIRS approaches. However, most existing fNIRS devices only permit the acquisition of ~20-100 sparsely distributed fNIRS channels, and increasing the number of optodes presents significant mechanical challenges, particularly for infant applications. A new generation of wearable, modular, high-density diffuse optical tomography (HD-DOT) technologies has recently emerged that overcomes many of the limitations of traditional, fibre-based and low-density fNIRS measurements. Driven by the development of this new technology, we have undertaken the first study of the infant brain using wearable HD-DOT. Using a well-established social stimulus paradigm, and combining this new imaging technology with advances in cap design and spatial registration, we show that it is now possible to obtain high-quality, functional images of the infant brain with minimal constraints on either the environment or on the infant participants. Our results are consistent with prior low-density fNIRS measures based on similar paradigms, but demonstrate superior spatial localization, improved depth specificity, higher SNR and a dramatic improvement in the consistency of the responses across participants. Our data retention rates also demonstrate that this new generation of wearable technology is well tolerated by the infant population.


Assuntos
Encéfalo/diagnóstico por imagem , Tomografia Óptica/instrumentação , Dispositivos Eletrônicos Vestíveis , Encéfalo/crescimento & desenvolvimento , Feminino , Neuroimagem Funcional , Humanos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Lactente , Masculino , Razão Sinal-Ruído , Espectroscopia de Luz Próxima ao Infravermelho , Tomografia Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...