Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Chem Biol ; 2(6): 1631-1642, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34977578

RESUMO

There is compelling evidence that small oligomeric aggregates, emerging during the assembly of amyloid fibrils and plaques, are important molecular pathogens in many amyloid diseases. While significant progress has been made in revealing the mechanisms underlying fibril growth, understanding how amyloid oligomers fit into the fibril assembly process, and how they contribute to the pathogenesis of amyloid diseases, has remained elusive. Commonly, amyloid oligomers are considered to be metastable, early-stage precursors to fibril formation that are either on- or off-pathway from fibril growth. In addition, amyloid oligomers have been reported to colocalize with late-stage fibrils and plaques. Whether these early and late-stage oligomer species are identical or distinct, and whether both are relevant to pathogenesis remains unclear. Here we report on the formation of two distinct oligomer species of lysozyme, formed either during the early or late-stages of in vitro fibril growth. We further observe that the pH change from in vitro growth conditions to cell media used for toxicity studies induced distinct mesoscopic precipitates, two of which resemble either diffuse or neuritic plaques seen in Alzheimer's histology. Our biophysical characterization indicates that both oligomer species share morphological and tinctorial features considered characteristic for amyloid oligomers. At the same time, their sizes, morphologies, their immunostaining, detailed tinctorial profiles and, most prominently, their biological activity are clearly distinct from each other. Probing the conditions promoting the formation of these two distinct oligomer species suggests distinct roles of charge interactions, hydrophobicity and monomer flexibility in directing oligomer assembly.

2.
Angew Chem Int Ed Engl ; 60(6): 3016-3021, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33095508

RESUMO

Amyloid-ß peptides (Aß) assemble into both rigid amyloid fibrils and metastable oligomers termed AßO or protofibrils. In Alzheimer's disease, Aß fibrils constitute the core of senile plaques, but Aß protofibrils may represent the main toxic species. Aß protofibrils accumulate at the exterior of senile plaques, yet the protofibril-fibril interplay is not well understood. Applying chemical kinetics and atomic force microscopy to the assembly of Aß and lysozyme, protofibrils are observed to bind to the lateral surfaces of amyloid fibrils. When utilizing Aß variants with different critical oligomer concentrations, the interaction inhibits the autocatalytic proliferation of amyloid fibrils by secondary nucleation on the fibril surface. Thus, metastable oligomers antagonize their replacement by amyloid fibrils both by competing for monomers and blocking secondary nucleation sites. The protofibril-fibril interaction governs their temporal evolution and potential to exert specific toxic activities.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Cinética , Microscopia de Força Atômica , Muramidase/metabolismo , Agregados Proteicos/fisiologia , Ligação Proteica , Propriedades de Superfície
3.
Biomolecules ; 9(10)2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569739

RESUMO

Assembly of amyloid fibrils and small globular oligomers is associated with a significant number of human disorders that include Alzheimer's disease, senile systemic amyloidosis, and type II diabetes. Recent findings implicate small amyloid oligomers as the dominant aggregate species mediating the toxic effects in these disorders. However, validation of this hypothesis has been hampered by the dearth of experimental techniques to detect, quantify, and discriminate oligomeric intermediates from late-stage fibrils, in vitro and in vivo. We have shown that the onset of significant oligomer formation is associated with a transition in thioflavin T kinetics from sigmoidal to biphasic kinetics. Here we showed that this transition can be exploited for screening fluorophores for preferential responses to oligomer over fibril formation. This assay identified crystal violet as a strongly selective oligomer-indicator dye for lysozyme. Simultaneous recordings of amyloid kinetics with thioflavin T and crystal violet enabled us to separate the combined signals into their underlying oligomeric and fibrillar components. We provided further evidence that this screening assay could be extended to amyloid-ß peptides under physiological conditions. Identification of oligomer-selective dyes not only holds the promise of biomedical applications but provides new approaches for unraveling the mechanisms underlying oligomer versus fibril formation in amyloid assembly.


Assuntos
Amiloide/química , Benzotiazóis/química , Corantes Fluorescentes/química , Violeta Genciana/química , Amiloide/síntese química , Humanos , Cinética
4.
PLoS One ; 12(5): e0176983, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542206

RESUMO

Intrinsic protein fluorescence is inextricably linked to the near-UV autofluorescence of aromatic amino acids. Here we show that a novel deep-blue autofluorescence (dbAF), previously thought to emerge as a result of protein aggregation, is present at the level of monomeric proteins and even poly- and single amino acids. Just as its aggregation-related counterpart, this autofluorescence does not depend on aromatic residues, can be excited at the long wavelength edge of the UV and emits in the deep blue. Differences in dbAF excitation and emission peaks and intensities from proteins and single amino acids upon changes in solution conditions suggest dbAF's sensitivity to both the chemical identity and solution environment of amino acids. Autofluorescence comparable to dbAF is emitted by carbonyl-containing organic solvents, but not those lacking the carbonyl group. This implicates the carbonyl double bonds as the likely source for the autofluorescence in all these compounds. Using beta-lactoglobulin and proline, we have measured the molar extinction coefficients and quantum yields for dbAF in the monomeric state. To establish its potential utility in monitoring protein biophysics, we show that dbAF emission undergoes a red-shift comparable in magnitude to tryptophan upon thermal denaturation of lysozyme, and that it is sensitive to quenching by acrylamide. Carbonyl dbAF therefore provides a previously neglected intrinsic optical probe for investigating the structure and dynamics of amino acids, proteins and, by extension, DNA and RNA.


Assuntos
Aminoácidos/química , Proteínas/química , Acrilamida/química , Fluorescência , Lactoglobulinas/química , Imagem Óptica/métodos , Prolina/química , Soluções/química , Espectrometria de Fluorescência/métodos , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...