Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Osteoporos ; 19(1): 18, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38503995

RESUMO

Fracture risk stratification is crucial in countries with limited access to bone density measurement. 24.8% women were in the high-risk category while 30.4% were in the low-risk category. In the intermediate risk group, after recalculation of fracture risk with bone density, 38.3% required treatment. In more than half, treatment decisions can be made without bone density. PURPOSE: We aimed to examine the role of age-dependent intervention thresholds (ITs) applied to the Fracture Risk Assessment (FRAX) tool in therapeutic decision making for osteoporosis in the Malaysian population. METHODS: Data were collated from 1380 treatment-naïve postmenopausal women aged 40-85 years who underwent bone mineral density (BMD) measurements for clinical reasons. Age-dependent ITs, for both major osteoporotic fracture (MOF) and hip fracture (HF), were calculated considering a woman with a BMI of 25 kg/m2, aged between 40 and 85years, with a prior fragility fracture, sans other clinical risk factors. Those with fracture probabilities equal to or above upper assessment thresholds (UATs) were considered to have high fracture risk. Those below the lower assessment thresholds (LATs) were considered to have low fracture risk. RESULTS: The ITs of MOF and HF ranged from 0.7 to 18% and 0.2 to 8%, between 40 and 85years. The LATs of MOF ranged from 0.3 to 11%, while those of HF ranged from 0.1 to 5.2%. The UATs of MOF and HF were 0.8 to 21.6% and 0.2 to 9.6%, respectively. In this study, 24.8% women were in the high-risk category while 30.4% were in the low-risk category. Of the 44.8% (n=618) in the intermediate risk group, after recalculation of fracture risk with BMD input, 38.3% (237/618) were above the ITs while the rest (n=381, 61.7%) were below the ITs. Judged by the Youden Index, 11.5% MOF probability which was associated with a sensitivity of 0.62 and specificity of 0.83 and 4.0% HF probability associated with a sensitivity of 0.63 and a specificity 0.82 were found to be the most appropriate fixed ITs in this analysis. CONCLUSION: Less than half of the study population (44.8%) required BMD for osteoporosis management when age-specific assessment thresholds were applied. Therefore, in more than half, therapeutic decisions can be made without BMD based on these assessment thresholds.


Assuntos
Fraturas do Quadril , Osteoporose , Fraturas por Osteoporose , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Medição de Risco , Osteoporose/epidemiologia , Osteoporose/terapia , Osteoporose/complicações , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/complicações , Densidade Óssea , Fatores de Risco , Fraturas do Quadril/epidemiologia , Fraturas do Quadril/terapia , Fraturas do Quadril/complicações , Tomada de Decisões
2.
Dalton Trans ; 52(44): 16345-16355, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37856218

RESUMO

Exploiting high-efficiency and durable electrocatalysts toward the methanol oxidation reaction (MOR) is crucial for the advancement of direct methanol fuel cells (DMFCs). Herein, we demonstrate the loading of platinum-palladium bimetallic nanoparticles (Pt-Pd NPs) onto poly(3,4-ethylenedioxythiophene) (PEDOT)-embellished titanium carbide (Ti3C2Tx) nanosheets as the electrocatalyst (Ti3C2Tx/PEDOT/Pt-Pd) via a facile and rapid chemical reduction-assisted one-pot hydrothermal process. The structural and morphological analyses of Ti3C2Tx/PEDOT/Pt-Pd indicate that the three-dimensional (3D) hybrid structure formed between PEDOT and Ti3C2Tx provides a sizable active surface and more active sites, which enhances the homogeneous dispersion of the Pt-Pd NPs and facilitates mass transfer. The Schottky junctions formed between PEDOT and Pt-Pd NPs contribute to charge transfer. The electronic effects and synergistic interactions between the support and catalyst favor the electrocatalytic activity of the catalyst. The electrochemical test results reveal that the Ti3C2Tx/PEDOT/Pt-Pd catalyst has prominent electrocatalytic capability for the MOR. Compared with Ti3C2Tx/Pt-Pd and commercial Pt/C catalysts, the Ti3C2Tx/PEDOT/Pt-Pd catalyst has a larger electrochemical activity surface area (ECSA = 122 m2 g-1) and higher mass activity (MA = 1445.4 mA mg-1), as well as better CO tolerance and more reliable long-term durability (a peak current density retention of 71% after 5200 s).

3.
RSC Adv ; 11(26): 15825-15834, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35481183

RESUMO

Ultraviolet (UV) detectors based on zinc oxide (ZnO) nanorods (NRs) are ideal materials for UV radiation detection. However, owing to the surface effect of ZnO NRs, their speed of photoresponse and photosensitivity need to be improved. In this study, a UV photodetector was fabricated via electrochemical coating of poly(3,4-propylenedioxythiophene) grafted with functional groups (-OH) on a hydrothermally grown ZnO NRs. For comparison, poly(3,4-propylenedioxythiophene)/ZnO composites were synthesized using the same method. The structure of the composite film was characterized by Fourier transform infrared spectroscopy (FT-IR), UV-visible spectroscopy (UV-vis), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). The effect of the polymer structure on the UV sensing ability of ZnO NRs was evaluated by fabricating a UV detector with a composite material. The structural results indicated that the PProDOT-type conductive polymer and ZnO composites were successfully synthesized. The UV photodetection results showed that the presence of functional groups (-OH) in polymer chains could enhance the responsivity of the material. The response time of the ZnO/PProDOT-OH composite was 15 s shorter than that of the ZnO/PProDOT composite. A rise in photocurrent induced an increase from 2.5 A W-1 to 34.75 A W-1 in the UV photoresponsivity of the ZnO/PProDOT-OH composite, compared with that of the pure ZnO NRs. The external quantum efficiency and detectivity significantly improved, the increases of which were attributed to the coupling of the polymer and ZnO NRs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...