Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Am Chem Soc ; 133(10): 3324-7, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21341649

RESUMO

The zero-band-gap electronic structure of graphene enables it to function as either the diene or the dienophile in the Diels-Alder reaction, and this versatile synthetic method offers a powerful strategy for the reversible modification of the electronic properties of graphene under very mild conditions.

3.
Carbon N Y ; 49(12): 3789-3795, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22408276

RESUMO

Large-area mono- and bilayer graphene films were synthesized on Cu foil (~ 1 inch(2)) in about 1 min by a simple ethanol-chemical vapor deposition (CVD) technique. Raman spectroscopy and high resolution transmission electron microscopy revealed the synthesized graphene films to have polycrystalline structures with 2-5 nm individual crystallite size which is a function of temperature up to 1000°C. X-ray photoelectron spectroscopy investigations showed about 3 atomic% carboxylic (COOH) functional groups were formed during growth. The field-effect transistor devices fabricated using polycrystalline graphene as conducting channel (L(c)=10 µm; W(c)=50 µm) demonstrated a p-type semiconducting behavior with high drive current and Dirac point at ~35 V. This simple one-step method of growing large area polycrystalline graphene films with semiconductor properties and easily functionalizable groups should assist in the realization of potential of polycrystalline graphene for nanoelectronics, sensors and energy storage devices.

4.
J Am Chem Soc ; 132(41): 14429-36, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20873843

RESUMO

We report the effect of electrochemical oxidation in nitric acid on the electronic properties of epitaxial graphene (EG) grown on silicon carbide substrates; we demonstrate the availability of an additional reaction channel in EG, which is not present in graphite but which facilitates the introduction of the reaction medium into the graphene galleries during electro-oxidation. The device performance of the chemically processed graphene was studied by patterning the EG wafers with two geometrically identical macroscopic channels; the electro-oxidized channel showed a logarithmic increase of resistance with decreasing temperature, which is ascribed to the scattering of charge carriers in a two-dimensional electronic gas, rather than the presence of an energy gap at the Fermi level. Field-effect transistors were fabricated on the electro-oxidized and pristine graphene channels using single-walled carbon nanotube thin film top gate electrodes, thereby allowing the study of the effect of oxidative chemistry on the transistor performance of EG. The electro-oxidized channel showed higher values for the on-off ratio and the mobility of the graphene field-effect transistor, which we ascribe to the availability of high-quality internal graphene layers after electro-oxidation of the more defective top layers. Thus, the present oxidative process provides a clear contrast with previously demonstrated covalent chemistry in which sp(3) hybridized carbon atoms are introduced into the graphitic transport layer of the lattice by carbon-carbon bond formation, thereby opening an energy gap.

5.
Nano Lett ; 10(10): 4061-6, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20738114

RESUMO

In order to engineer a band gap into graphene, covalent bond-forming reactions can be used to change the hybridization of the graphitic atoms from sp(2) to sp(3), thereby modifying the conjugation length of the delocalized carbon lattice; similar side-wall chemistry has been shown to introduce a band gap into metallic single-walled carbon nanotubes. Here we demonstrate that the application of such covalent bond-forming chemistry modifies the periodicity of the graphene network thereby introducing a band gap (∼0.4 eV), which is observable in the angle-resolved photoelectron spectroscopy of aryl-functionalized graphene. We further show that the chemically-induced changes can be detected by Raman spectroscopy; the in-plane vibrations of the conjugated π-bonds exhibit characteristic Raman spectra and we find that the changes in D, G, and 2D-bands as a result of chemical functionalization of the graphene basal plane are quite distinct from that due to localized, physical defects in sp(2)-conjugated carbon.

6.
J Am Chem Soc ; 131(3): 1144-53, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19154177

RESUMO

We study the interfacial behavior between the straight-chain alkyl surfactant sodium dodecyl sulfate (SDS) and single-walled carbon nanotubes (SWNTs) as a function of added electrolytes, including NaCl. We observe an increase in photoluminescence intensity and narrowing of spectral line widths with electrolyte addition, indicating a change in SDS aggregation number that leads to a pronounced volume change in the nanotube/SDS composite structure. By tuning the interfacial dynamics through NaCl addition and temperature change, we demonstrate that this volume change can be used to yield diameter-dependent separation of metallic and semiconducting SWNTs, without the use of any additional cosurfactant, through density gradient ultracentrifugation. The diameter-dependent fractionation follows the intrinsic relation expected for the density of unfunctionalized nanotubes, indicating a simple amplification of these inherent density differences as the mechanism for salt enhanced separations. Isolation of enriched metallic and semiconducting fractions further illustrates that the surface aggregation characteristics of SDS on metallic SWNTs are different from that on the semiconducting chiralities. These experiments illustrate the governing behavior of surface phenomena and interfacial forces on the diameter-dependent fractionation of SWNTs and point to new routes for enhancing existing separations strategies.

8.
J Am Chem Soc ; 128(24): 7720-1, 2006 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-16771469

RESUMO

Covalent derivatization of the acidic functional groups in oxidized graphite with octadecylamine renders graphite soluble in common organic solvents. Atomic force microscopic characterization of the soluble species supports the idea that the solutions consist of single and few layer graphene sheets, and we report the first solution properties of graphite.

9.
J Am Chem Soc ; 127(10): 3439-48, 2005 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-15755163

RESUMO

We compare popular analytical techniques, including scanning and transmission electron microscopy (SEM and TEM), thermogravimetric analysis (TGA), and Raman and near-infrared (NIR) spectroscopy, for the evaluation of the purity of bulk quantities of single-walled carbon nanotubes (SWNTs). Despite their importance as imaging techniques, SEM and TEM are not capable of quantitatively evaluating the purity of typical inhomogeneous bulk SWNT samples because the image frame visualizes less than 1 pg of SWNT material; furthermore, there is no published algorithm to convert such images into numerical data. The TGA technique is capable of measuring the amount of metal catalyst in an SWNT sample, but does not provide an unambiguous separation between the content of SWNTs and carbonaceous impurities. We discuss the utilization of solution-phase near-infrared spectroscopy and solution-phase Raman spectroscopy to quantitatively compare arbitrary samples of bulk SWNT materials of different purities. The primary goal of this paper is to provide the chemical community with a realistic evaluation of current analytical tools for the purity evaluation of a bulk sample of SWNTs. The secondary goal is to draw attention to the growing crisis in the SWNT industry as a result of the lack of quality control and the misleading advertising by suppliers of this material.

10.
J Am Chem Soc ; 126(51): 16698-9, 2004 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-15612688

RESUMO

Aligned single-walled carbon nanotubes (SWNTs) and hierarchical SWNT assembly were fabricated by electrospinning. The high fiber elongation and high DC electric field applied during the electrospinning process result in the orientation of the SWNTs along the axial direction of the fiber. The alignment of the electropsun composite fiber transfers this local SWNT orientation to macroscopically aligned SWNTs. After removing the polymer component from the aligned composite fiber, we produced large area aligned SWNTs. The results show that the directional control of SWNT alignment and debundling of SWNTs into individual tubes can be simultaneously realized.

11.
Proc Natl Acad Sci U S A ; 101(17): 6331-2, 2004 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-15096591
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...