Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(12): 2919-2934.e20, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38761800

RESUMO

A critical roadblock to HIV vaccine development is the inability to induce B cell lineages of broadly neutralizing antibodies (bnAbs) in humans. In people living with HIV-1, bnAbs take years to develop. The HVTN 133 clinical trial studied a peptide/liposome immunogen targeting B cell lineages of HIV-1 envelope (Env) membrane-proximal external region (MPER) bnAbs (NCT03934541). Here, we report MPER peptide-liposome induction of polyclonal HIV-1 B cell lineages of mature bnAbs and their precursors, the most potent of which neutralized 15% of global tier 2 HIV-1 strains and 35% of clade B strains with lineage initiation after the second immunization. Neutralization was enhanced by vaccine selection of improbable mutations that increased antibody binding to gp41 and lipids. This study demonstrates proof of concept for rapid vaccine induction of human B cell lineages with heterologous neutralizing activity and selection of antibody improbable mutations and outlines a path for successful HIV-1 vaccine development.


Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Linfócitos B , Anticorpos Anti-HIV , HIV-1 , Humanos , Vacinas contra a AIDS/imunologia , HIV-1/imunologia , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Linhagem da Célula , Lipossomos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Mutação , Proteína gp41 do Envelope de HIV/imunologia
2.
Viruses ; 13(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34960744

RESUMO

Development of potential HIV-1 curative interventions requires accurate characterization of the proviral reservoir, defined as host-integrated viral DNA genomes that drive rebound of viremia upon halting ART (antiretroviral therapy). Evaluation of such interventions necessitates methods capable of pinpointing the rare, genetically intact, replication-competent proviruses within a background of defective proviruses. This evaluation can be achieved by identifying the distinct integration sites of intact proviruses within host genomes and monitoring the dynamics of these proviruses and host cell lineages over longitudinal sampling. Until recently, molecular genetic approaches at the single proviral level have been generally limited to one of a few metrics, such as proviral genome sequence/intactness, host-proviral integration site, or replication competency. New approaches, taking advantage of MDA (multiple displacement amplification) for WGA (whole genome amplification), have enabled multiparametric proviral characterization at the single-genome level, including proviral genome sequence, host-proviral integration site, and phenotypic characterization of the host cell lineage, such as CD4 memory subset and antigen specificity. In this review, we will examine the workflow of MDA-augmented molecular genetic approaches to study the HIV-1 reservoir, highlighting technical advantages and flexibility. We focus on a collection of recent studies in which investigators have used these approaches to comprehensively characterize intact and defective proviruses from donors on ART, investigate mechanisms of elite control, and define cell lineage identity and antigen specificity of infected CD4+ T cell clones. The highlighted studies exemplify how these approaches and their future iterations will be key in defining the targets and evaluating the impacts of HIV curative interventions.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , HIV-1/genética , Provírus/genética , Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Vírus Defeituosos/genética , Genoma Viral , Infecções por HIV/tratamento farmacológico , Paciente HIV Positivo não Progressor , HIV-1/fisiologia , Humanos , Células T de Memória/virologia , Técnicas de Amplificação de Ácido Nucleico , Provírus/fisiologia , Viremia , Integração Viral , Latência Viral
3.
Proc Natl Acad Sci U S A ; 116(51): 25891-25899, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31776247

RESUMO

Understanding HIV-1 persistence despite antiretroviral therapy (ART) is of paramount importance. Both single-genome sequencing (SGS) and integration site analysis (ISA) provide useful information regarding the structure of persistent HIV DNA populations; however, until recently, there was no way to link integration sites to their cognate proviral sequences. Here, we used multiple-displacement amplification (MDA) of cellular DNA diluted to a proviral endpoint to obtain full-length proviral sequences and their corresponding sites of integration. We applied this method to lymph node and peripheral blood mononuclear cells from 5 ART-treated donors to determine whether groups of identical subgenomic sequences in the 2 compartments are the result of clonal expansion of infected cells or a viral genetic bottleneck. We found that identical proviral sequences can result from both cellular expansion and viral genetic bottlenecks occurring prior to ART initiation and following ART failure. We identified an expanded T cell clone carrying an intact provirus that matched a variant previously detected by viral outgrowth assays and expanded clones with wild-type and drug-resistant defective proviruses. We also found 2 clones from 1 donor that carried identical proviruses except for nonoverlapping deletions, from which we could infer the sequence of the intact parental virus. Thus, MDA-SGS can be used for "viral reconstruction" to better understand intrapatient HIV-1 evolution and to determine the clonality and structure of proviruses within expanded clones, including those with drug-resistant mutations. Importantly, we demonstrate that identical sequences observed by standard SGS are not always sufficient to establish proviral clonality.


Assuntos
HIV-1/genética , Integração Viral/genética , Replicação Viral/genética , Antirretrovirais/uso terapêutico , Sequência de Bases , Linhagem Celular , DNA Viral/genética , Farmacorresistência Viral , Infecções por HIV/virologia , Humanos , Leucócitos Mononucleares/virologia , Linfonodos/virologia , Mutação , Provírus/genética , Integração Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...