Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e31235, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845869

RESUMO

Municipal solid waste management is a major concern in developing economies, requiring collective international efforts to achieve carbon neutrality by diverting waste from disposal facilities. This study aims to highlight the importance of the waste sector as it has the potential to significantly contribute to climate change and its toxicity impact on the local ecosystem. Out of the total municipal solid waste generated, only 78 % is collected, either open dumped or thrown in sanitary landfills. The waste sector's ecological impact value is calculated for the Earth's regions, and it is very high at >50 % in Africa, Asia, Latin America and the Caribbean. This sectoral impact value is mainly responsible for greenhouse gas emissions and degradation of the local ecosystem health. Current business‒as‒usual practices attribute 3.42 % of global emissions to the waste sector. Various scenarios are developed based on waste diversion and related emissions modelling, and it is found that scenarios 3 and 4 will support the policymakers of the regions in attaining zero carbon footprints in the waste sector. Our findings conclude that cost-effective nature-based solutions will help low‒income countries reduce emissions from disposal sites and significantly improve the local ecosystem's health. Developed economies have established robust waste‒handling policies and implementation frameworks, and there is a need for collaboration and knowledge sharing with developing economies at the regional level to sustain the sector globally.

2.
Sci Total Environ ; 931: 172967, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38705297

RESUMO

The fascinating world of microscopic life unveils a captivating spectacle as bacteria effortlessly maneuver through their surroundings with astonishing accuracy, guided by the intricate mechanism of chemotaxis. This review explores the complex mechanisms behind this behavior, analyzing the flagellum as the driving force and unraveling the intricate signaling pathways that govern its movement. We delve into the hidden costs and benefits of this intricate skill, analyzing its potential to propagate antibiotic resistance gene while shedding light on its vital role in plant colonization and beneficial symbiosis. We explore the realm of human intervention, considering strategies to manipulate bacterial chemotaxis for various applications, including nutrient cycling, algal bloom and biofilm formation. This review explores the wide range of applications for bacterial capabilities, from targeted drug delivery in medicine to bioremediation and disease control in the environment. Ultimately, through unraveling the intricacies of bacterial movement, we can enhance our comprehension of the intricate web of life on our planet. This knowledge opens up avenues for progress in fields such as medicine, agriculture, and environmental conservation.


Assuntos
Bactérias , Fenômenos Fisiológicos Bacterianos , Quimiotaxia , Biodegradação Ambiental
3.
J Environ Manage ; 351: 119888, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176379

RESUMO

Amid rising energy crises and greenhouse gas (GHG) emissions, designing energy efficient, GHG mitigation and profitable conservation farming strategies are pertinent for global food security. Therefore, we tested a hypothesis that no-till with residue retaining could improve energy productivity (EP) and energy use efficiency (EUE) while mitigating the carbon footprint (CF), water footprint (WF) and GHG emissions in rice-wheat double cropping system. We studied two tillage viz., conventional and conservation, with/without residue retaining, resulting as CT0 (puddled-transplanted rice, conventional wheat -residue), CTR (puddled-transplanted rice, conventional wheat + residue), NT0 (direct seeded rice, zero-till wheat -residue), and NTR (direct seeded rice, zero-till wheat + residue). The overall results showed that the NTR/NT0 had 34% less energy consumption and 1.2-time higher EP as compared to CTR/CT0. In addition, NTR increased 19.8% EUE than that of CT0. The grain yield ranged from 8.7 to 9.3 and 7.8-8.5 Mg ha-1 under CT and NT system, respectively. In NTR, CF and WF were 56.6% and 17.9% lower than that of CT0, respectively. The net GHG emissions were the highest (7261.4 kg CO2 ha-1 yr-1) under CT0 and lowest (4580.9 kg CO2 ha-1 yr-1) under NTR. Notably, the carbon sequestration under NTR could mitigate half of the system's CO2-eq emissions. The study results suggest that NTR could be a viable option to offset carbon emissions and water footprint by promoting soil organic carbon sequestration, and enhancing energy productivity and energy use efficiency in the South Asian Indo-Gangetic Plains.


Assuntos
Gases de Efeito Estufa , Oryza , Solo/química , Triticum , Carbono/análise , Dióxido de Carbono , Agricultura/métodos , Água
4.
Environ Res ; 246: 118163, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215929

RESUMO

The ecological transition in the transport sector is a major challenge to tackle environmental pollution, and European legislation will mandate zero-emission new cars from 2035. To reduce the impact of petrol and diesel vehicles, much emphasis is being placed on the potential use of synthetic fuels, including electrofuels (e-fuels). This research aims to examine a levelised cost (LCO) analysis of e-fuel production where the energy source is renewable. The energy used in the process is expected to come from a photovoltaic plant and the other steps required to produce e-fuel: direct air capture, electrolysis and Fischer-Tropsch process. The results showed that the LCOe-fuel in the baseline scenario is around 3.1 €/l, and this value is mainly influenced by the energy production component followed by the hydrogen one. Sensitivity, scenario and risk analyses are also conducted to evaluate alternative scenarios, and it emerges that in 84% of the cases, LCOe-fuel ranges between 2.8 €/l and 3.4 €/l. The findings show that the current cost is not competitive with fossil fuels, yet the development of e-fuels supports environmental protection. The concept of pragmatic sustainability, incentive policies, technology development, industrial symbiosis, economies of scale and learning economies can reduce this cost by supporting the decarbonization of the transport sector.


Assuntos
Fontes Geradoras de Energia , Hidrogênio , Combustíveis Fósseis , Automóveis , Custos e Análise de Custo
6.
Environ Sci Pollut Res Int ; 31(12): 17760-17777, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37648915

RESUMO

The share of solar energy in the energy mix has become a major concern, and the global effort is to increase its contribution. Photovoltaic technology is an environment-friendly way of electricity production compared to fossil fuels. Currently, third generation of solar cells with a maximum average conversion efficiency of 20% has been achieved. Asia is an emerging market for photovoltaic technology, and it has recorded the highest installation capacity for 2018 (280 MW), 2030 (1860 MW), and 2050 (4837 MW). Meanwhile, Asia is estimated to be the highest producer of PV waste by 2040, with 5,580,000 metric tons of waste volume. Solid waste management is already a big environmental issue in South Asian countries, and untested landfilling of solar cells can further increase the burden. This review emphasizes the end-of-life scenario of solar cells in developing South Asian countries. Solar cell waste is hazardous e-waste that can lead to environmental and health impacts if not managed properly. It consists of metals with market value, which can be waste or gold, depending on its management. The study finds that recycling is the economically and environmentally effective waste management option for solar cells in South Asia. This paper reviews the deficiencies in the existing solar cell waste management framework in South Asian countries. Moreover, practical implications are presented for designing an effective waste management plan for solar cells in South Asian countries. Strong legislation, sufficient recycling infrastructure, and high stakeholders' interests are required to resolve this environmental concern.


Assuntos
Gerenciamento de Resíduos , Reciclagem , Ásia , Índia , Resíduos Sólidos , Ásia Meridional
7.
Environ Res ; 244: 117858, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086500

RESUMO

The solid waste management (SWM) system is in a transitional phase in developing economies, and local municipalities and waste management companies are stepping toward integrating a waste treatment approach in the scheme of waste handling. However, there is an urgent need to explore cost-effective techniques, models, and potential revenue streams to sustain the state-run waste sector self-sufficiently. The proposed SWM model aims to support the local waste sector in Islamabad, the capital city of Pakistan, with 100% service area coverage to attain environmental and economic sustainability by defining dedicated waste collection streams to ensure quality material recovery under a cost-effective approach and modality. The innovative approach is applied to allocate the tonnage to various streams as per the city's current land use plan. The estimated/cost of the cleanliness services will be USD13.1 million per annum with an estimated per ton cost of USD 23. The establishment of the proposed material recovery facility (MRF) will process about 500 t/d of waste to produce 45 t/d compost and recover 130 t/d of recyclables. The environmentally friendly model saves 2.4 million tons of CO2‒eq/month from composting and recycling. The average economic potential from MRF and debris-crushing plants, including environmental benefit value, is calculated as USD 3.97 million annually. Recovery of services fee (70%) for various collection streams based on city land use and socio-economic conditions will generate revenue of USD 7.33 million annually. The total revenue will be USD 11.31 million (86% of total annual expenditures) to track the sector's self-sufficiency. To successfully reach the Sustainable Development Goals (SDGs) and Nationally Determined Contributions (NDCs), engaging the private sector from environmentally advanced economies to collaborate in the waste sector to enhance local technical capabilities is recommended.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Resíduos Sólidos , Eliminação de Resíduos/métodos , Análise Custo-Benefício , Gerenciamento de Resíduos/métodos , Reciclagem , Cidades
8.
Environ Res ; 243: 117786, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38036215

RESUMO

The interplay between Municipal Solid Waste (MSW) Management and data science unveils a panorama of opportunities and challenges, set against the backdrop of rising global waste and evolving technological landscapes. This article threads through the multifaceted aspects of incorporating data science into MSW management, unearthing key findings, novel knowledge, and instigating a call to action for stakeholders (e.g. policymakers, local authorities, waste management professionals, technology developers, and the general public) across the spectrum. Predominant challenges like the enigmatic nature of "black-box" models and tangible knowledge gaps in the sector are scrutinized, ushering in a narrative that emphasizes transparent, stakeholder-inclusive, and policy-adaptive approaches. Notably, a conscious shift towards "white-box" and "grey-box" data science models has been spotlighted as a pivotal response to transparency issues. Furthermore, the discourse highlights the necessity of crafting data science solutions that are specifically moulded to the nuanced challenges of MSW management, and it underscores the importance of recalibrating existing policies to be reflexive to technological advancements. A resolute call echoes for stakeholders to not just adapt but immerse themselves in a continuous learning trajectory, championing transparency, and fostering collaborations that hinge on innovative, data-driven methodologies. Thus, as the realms of data science and MSW management entwine, the article sheds light on the potential transformation awaiting waste management paradigms, contingent on the nurtured amalgamation of technological advances, policy alignment, and collaborative synergy.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Resíduos Sólidos/análise , Ciência de Dados , Gerenciamento de Resíduos/métodos , Políticas
9.
Environ Res ; 241: 117702, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37980985

RESUMO

Trace heavy metals such as copper and nickel, when exceeds a certain level, cause detrimental effects on the ecosystem. The current study examined the potential of organic compounds enriched rice husk biochar (OCEB's) to remove the trace heavy metals from an aqueous solution in four steps. In 1st step, biochar' physical and chemical properties were analyzed through scanning electron microscope (SEM) and Fourier transforms infrared spectroscopy (FTIR). In the 2nd step, two biochar vis-a-vis glycine, alanine enriched biochar (GBC, ABC) was selected based on their adsorption capacity of four different metals Cr, Cu, Ni and Pb (chromium, copper, nickel, and lead). These two adsorbents (GBC, ABC) were further used to evaluate the best interaction of biochar for metal immobilization based on varying concentrations and times. Langmuir isotherm model suggested that the adsorption of Ni and Cu on the adsorbent surface supported the monolayer sorption. The qmax value of GBC for Cu removal increased by 90% compared to SBC (Simple rice husk biochar). The interaction of Cu and Ni with GBC and ABC was chemical, and 10 different time intervals were studied using pseud first and second-order kinetics models. The current study has supported the pseudo second-order kinetic model, which exhibited that the sorption of Ni and Cu occurred due to the chemical processes. The % removal efficiency with GBC was enhanced by 21% and 30% for Cu and Ni, respectively compared to the SBC. It was also noticed that GBC was 21% more efficient for % removal efficiency than the CBC. The study's findings supported that organic compound enriched rice husk biochar (GBC and ABC) is better than SBC for immobilizing the trace heavy metals from an aqueous solution.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Cobre/química , Níquel , Adsorção , Ecossistema , Metais Pesados/química , Compostos Orgânicos , Água , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
10.
Environ Pollut ; 326: 121474, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36965686

RESUMO

Recently, solar photovoltaic (PV) technology has shown tremendous growth among all renewable energy sectors. The attractiveness of a PV system depends deeply of the module and it is primarily determined by its performance. The quantity of electricity and power generated by a PV cell is contingent upon a number of parameters that can be intrinsic to the PV system itself, external or environmental. Thus, to improve the PV panel performance and lifetime, it is crucial to recognize the main parameters that directly influence the module during its operational lifetime. Among these parameters there are numerous factors that positively impact a PV system including the temperature of the solar panel, humidity, wind speed, amount of light, altitude and barometric pressure. On the other hand, the module can be exposed to simultaneous environmental stresses such as dust accumulation, shading and pollution factors. All these factors can gradually decrease the performance of the PV panel. This review not only provides the factors impacting PV panel's performance but also discusses the degradation and failure parameters that can usually affect the PV technology. The major points include: 1) Total quantity of energy extracted from a photovoltaic module is impacted on a daily, quarterly, seasonal, and yearly scale by the amount of dust formed on the surface of the module. 2) Climatic conditions as high temperatures and relative humidity affect the operation of solar cells by more than 70% and lead to a considerable decrease in solar cells efficiency. 3) The PV module current can be affected by soft shading while the voltage does not vary. In the case of hard shadowing, the performance of the photovoltaic module is determined by whether some or all of the cells of the module are shaded. 4) Compared to more traditional forms of energy production, PV systems offer a significant number of advantages to the environment. Nevertheless, these systems can procure greenhouse gas emissions, especially during the production stages. In conclusion, this study underlines the importance of considering multiple parameters while evaluating the performance of photovoltaic modules. Environmental factors can have a major impact on the performance of a PV system. It is critical to consider these factors, as well as intrinsic and other intermediate factors, to optimize the performance of solar energy systems. In addition, continuous monitoring and maintenance of PV systems is essential to ensure maximum efficiency and performance.


Assuntos
Gases de Efeito Estufa , Energia Solar , Poeira/análise , Umidade
11.
Environ Sci Pollut Res Int ; 30(4): 8682-8697, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35220536

RESUMO

Air pollution levels rise as a result of industrial and vehicular emissions, epidemiological issues such as asthma become more prevalent in Lahore, Punjab, Pakistan and cause adverse public health effects. Many studies explored the association between air pollutants and frequency of asthma hospital visits, although their effects are unclear. This study examined the link between air pollution, asthma, and socioeconomic and demographic factors. A questionnaire survey was administered among four age groups (15-25, 25-45, 45-60, and over 60 years old) in public and private hospitals of Lahore city. Daily average concentrations of five air pollutants including carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and particulate matter (PM2.5 and PM10) were recorded at ten fixed air monitoring sites in Lahore city. There were favorable connections between outpatient department (OPD) asthma visits (64%) and levels of outdoor air quality during winter season throughout the study period. The correlation between 1, 29, and 370 asthma patients and average daily air pollution levels found that the condition was more prevalent in females (53%) than males (47%). There was a significant correlation between PM10 exposure and asthma OPD visits in the city (p 0.001), as well as the elevated PM10 levels were substantially linked with OPD asthma visits over the winter season in the city. The hazard index (HI) for all adult population was estimated 0.001132. The study's findings indicate that exposure to ambient air pollution is a significant predictor of asthma hospital visits, particularly among the elderly. Strategies can be developed by policymakers in response to the worrying situation of allergic disease asthma in industrial cities due to air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Ozônio , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Asma/epidemiologia , Asma/induzido quimicamente , Cidades , Dióxido de Nitrogênio/análise , Ozônio/análise , Material Particulado/análise , Grupos Populacionais , Dióxido de Enxofre/análise , Adolescente , Adulto Jovem
12.
Environ Sci Pollut Res Int ; 30(13): 35945-35957, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36538227

RESUMO

Semi-volatile organic compounds (SVOCs) are a major global problem that causes the greatest impact on urban settings and have been linked to bronchial asthma in both children and adults in Pakistan. The association between exposure of polycyclic aromatic hydrocarbons (PAHs) and asthma in the adult population is less clear. The current study aimed to assess the clinico-chemical parameters and blood levels of naphthalene phenanthrene, pyrene, and 1,2-benzanthracene and urinary levels of 1-OH pyrene and 1-OH phenanthrene as well as asthma-related biomarkers immunoglobulin E (IgE), resistin, and superoxide dismutase (SOD) of oxidative stress and other hematologic parameters in adults and their relationship with bronchial asthma. The GC/MS analysis showed higher mean concentrations of blood PAHs in asthma respondents (4.48 ± 1.34, 3.46 ± 1.04, 0.10 ± 0.03, and 0.29 ± 0.09) (ng/mL) as compared to controls (3.07 ± 0.92, 1.71 ± 0.51, 0.06 ± 0.02, and 0.11 ± 0.03) (ng/mL), with p = .006, p = .001, p = .050, and p = .001. Similarly, urinary levels of 1-OHpyr and 1-OHphe were significantly increased in adults with bronchial asthma (0.54 ± 0.16; 0.13 ± 0.04) (µmol/mol-Cr) than in controls (0.30 ± 0.09; 0.05 ± 0.02) (µmol/mol-Cr), with p = .002 and p = .0001, respectively, with a significant positive correlation to asthma severity. The asthma-related biomarkers IgE, resistin, and SOD were significantly higher (p 0.0001, 0.0001, and 0.0001) in people with asthma than in control persons. The findings showed that higher blood and urine PAHs levels were linked to higher asthma risk in adults and significant interaction with participants who smoked, had allergies, had a family history of asthma, and were exposed to dust. The current study's findings will be useful to local regulatory agencies in Lahore in terms of managing exposure and advocating efforts to minimize PAH pollution and manage health.


Assuntos
Asma , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Criança , Humanos , Adulto , Hidrocarbonetos Policíclicos Aromáticos/análise , Resistina , Pirenos , Biomarcadores , Asma/epidemiologia , Superóxido Dismutase
13.
Environ Sci Pollut Res Int ; 30(1): 1825-1840, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35921015

RESUMO

This study aims to evaluate municipal landfill sites' operational and financial viability, waste amount and characterization, primary and secondary collection systems, revenue generation from MSW, vehicle routing, and age of landfill sites located in Akhtarabad, Sahiwal Division. Three operational and financial models were developed to calculate cost/ton value based on obtained data. The obtained results indicate that the cost/ton values for models are the following: 20.01 USD for Model-1, 8.96 USD Model-2, and Model-3 is about 10.23 USD. The waste characterization represented waste consisting of compostable (57%), recyclable (10%), Refuse Derived Fuel (RDF) (12%), earth fill (20%), and disposable material (1%). Revenue/ton of municipal solid waste was about 19.47 USD, and according to cost-benefit analysis, the cost of Model-1 was higher than the benefit. In contrast, the costs of Model-2 and Model-3 were found to be lower than the revenue/ton. However, the waste collection efficiency of Model-1 was greater than both remaining models. The study concluded that utilizing all generated waste, only 21% of waste is dumped at the landfill site. It will reduce the area required for landfill sites from 431437 to 90602 m2 for the next 10 years and increase the age of landfill sites by over 20 years. It is recommended that the reuse of municipal solid waste and implementation of the no waste to landfill model would surely save money, land, and fuel, and it will also increase the age of landfill sites.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Cidades , Paquistão , Instalações de Eliminação de Resíduos , Gerenciamento de Resíduos/métodos
14.
Sci Total Environ ; 839: 156144, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35609698

RESUMO

A promising green hydrothermal process was used to produce biobased nanomaterials carbon dots (CDs) by using microalgae Chlorella pyrenoidosa (CP) and its main model compounds (i.e., glucose, glycine, and octadecanoic acid). The possible reaction pathway including hydrolysis, Amadori rearrangement, cyclization/aromatization, and polymerization was first proposed for the hydrothermal process to produce microalgae-based CDs. Interactions among carbohydrates and proteins in microalgae were vital intermediate reactions in the generation of CDs. The mass yield of CDs reached 7.2% when the CP was hydrothermally treated with 20:1 of liquid-to-solid ratio at 230 °C for 6 h. It was confirmed that nitrogen, sulfur, phosphorous, and potassium were doped onto CP-based CDs (CD-CP) successfully without additional reagents or treatments. The CD-CP yield was 4.0-24.3 times higher than that of model compound-based CDs. Regarding morphology, CD-CP was constituted by many spherical nanoparticles smaller than 20 nm. These CDs emitted blue fluorescence under ultraviolet light, and the fluorescence quantum yield of CD-CP was 4.7-9.4 times higher than that of CP model compound-based CDs. Last, CD-CP displayed broad application prospects as a sensor for Fe3+ detection in wastewater with high sensitivity.


Assuntos
Chlorella , Microalgas , Pontos Quânticos , Carbono/metabolismo , Fluorescência , Corantes Fluorescentes , Microalgas/metabolismo , Nitrogênio/metabolismo
15.
Chemosphere ; 296: 133968, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35181422

RESUMO

Investment in biofuels, as sustainable alternatives for fossil fuels, has gained momentum over the last decade due to the global environmental and health concerns regarding fossil fuel consumption. Hence, effective management of biofuel supply chain (BSC) components, including biomass feedstock production, biomass logistics, biofuel production in biorefineries, and biofuel distribution to consumers, is crucial in transitioning towards a low-carbon and circular economy (CE). The present study aims to render an inclusive knowledge map of the BSC-related scientific production. In this vein, a systematic review, supported by a keywords co-occurrence analysis and qualitative content analysis, was carried out on a total of 1,975 peer-reviewed journal articles in the target literature. The analysis revealed four major research hotspots in the BSC literature, namely (1) biomass-to-biofuel supply chain design and planning, (2) environmental impacts of biofuel production, (3) biomass to bioenergy, and (4) techno-economic analysis of biofuel production. Besides, the findings showed that the following subject areas of research in the BSC research community have recently attracted more attention: (i) global warming and climate change mitigation, (ii) development of the third-generation biofuels produced from algal biomass, which has recently gained momentum in the CE debate, and (iii) government incentives, pricing, and subsidizing policies. The provided insights shed light on the understanding of researchers, stakeholders, and policy-makers involved in the sustainable energy sector by outlining the main research backgrounds, developments, and tendencies within the BSC arena. Looking at the provided knowledge map, potential research directions in BSCs towards implementing the CE model, including (i) integrative policy convergence at macro, meso, and micro levels, and (ii) industrializing algae-based biofuel production towards the CE transition, were proposed.


Assuntos
Biocombustíveis , Combustíveis Fósseis , Biomassa , Carbono , Aquecimento Global , Plantas
16.
J Hazard Mater ; 424(Pt A): 127395, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879583

RESUMO

The presence of 4-nitrophenol (4-NP) in the wastewater industry causes toxicity and inhibition of the anaerobic degrading bacteria. The anaerobes in the multistage anaerobic reactor were loaded by 30.0 mg/gVS Graphene nanoparticles (MAR-Gn) as an electron acceptor to detoxify wastewater industry. The half maximal inhibitory concentration (IC50) was reduced from 455 ± 22.5 to 135 ± 12.7 µg Gallic acid equivalent/mL at 4-NP loading rate of 47.9 g/m3d. Furthermore, 4-NP was decreased by a value of 83.7 ± 4.9% in MAR-Gn compared to 65.6 ± 4.8% in control MAR. The 4-aminophenol (4-AP) recovery was accounted for 44.8% in the MAR-Gn at an average oxidation-reduction potential (ORP) of - 167.3 ± 21.2 mV. The remaining portions of 4-NP and 4-AP in the MAR-Gn effluent were efficiently removed by baffled high rate algal pond (BHRAP), resulting in overall removal efficiency of 91.6 ± 6.3 and 92.3 ± 4.6%, respectively. The Methanosaeta (52.9%) and Methanosphaerula (10.9%) were dominant species in MAR-Gn for reduction of 4-NP into 4-AP. Moreover, Chlorophyta cells (Chlorella vulgaris, Scenedesmus obliquus, Scenedesmus quadricauda and Ulothrix subtilissima were abundant in the BHRAP for complete degradation of 4-NP and 4-AP.


Assuntos
Chlorella vulgaris , Grafite , Scenedesmus , Anaerobiose , Reatores Biológicos , Nitrofenóis , Lagoas , Eliminação de Resíduos Líquidos , Águas Residuárias
17.
Bioresour Technol ; 346: 126513, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34890818

RESUMO

Advances in microbial enzyme technology offer a significant opportunity for developing low-energy bioconversion solutions for industrial wastes as inexpensive feedstocks for useful products. In this short communication, two agro-food industrial wastes, chicken feather powder (CFP) and okara, were converted into peptides by a Bacillus licheniformis mutant using solid-state fermentation (SSF). The optimum SSF conditions for okara to CFP ratio, inoculum size, and time were 0.7 (7:10), 15%, and 90 h, respectively, which produced 185.99 mg/g peptides, with 910.12 U/g keratinase activity and 85.03% antioxidant scavenging activity. Compared to okara, CFP with mutant strain showed 11.28% higher keratinase activity and produced higher amounts of peptides (5.51%).


Assuntos
Bacillus licheniformis , Bacillus , Bacillus/genética , Bacillus licheniformis/genética , Fermentação , Resíduos Industriais , Peptídeos
18.
J Hazard Mater ; 416: 125851, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492802

RESUMO

This study examines point and non-point sources of air pollution and particulate matter and their associated socioeconomic and health impacts in South Asian countries, primarily India, China, and Pakistan. The legislative frameworks, policy gaps, and targeted solutions are also scrutinized. The major cities in these countries have surpassed the permissible limits defined by WHO for sulfur dioxide, carbon monoxide, particulate matter, and nitrogen dioxide. As a result, they are facing widespread health problems, disabilities, and causalities at extreme events. Populations in these countries are comparatively more prone to air pollution effects because they spend more time in the open air, increasing their likelihood of exposure to air pollutants. The elevated level of air pollutants and their long-term exposure increases the susceptibility to several chronic/acute diseases, i.e., obstructive pulmonary diseases, acute respiratory distress, chronic bronchitis, and emphysema. More in-depth spatial-temporal air pollution monitoring studies in China, India, and Pakistan are recommended. The study findings suggest that policymakers at the local, national, and regional levels should devise targeted policies by considering all the relevant parameters, including the country's economic status, local meteorological conditions, industrial interests, public lifestyle, and national literacy rate. This approach will also help design and implement more efficient policies which are less likely to fail when brought into practice.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , China , Índia , Dióxido de Nitrogênio , Paquistão , Material Particulado/análise , Material Particulado/toxicidade , Dióxido de Enxofre/análise , Dióxido de Enxofre/toxicidade
19.
J Environ Manage ; 292: 112736, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33992871

RESUMO

The prediction of relative humidity is a challenging task because of its nonlinear nature. The machine learning-based prediction strategies have attained significant attention in tackling a broad class of challenging nonlinear and complex problems. The random forest algorithm is a well-proven machine learning algorithm due to its ease of training and implementation, as it requires minimal preprocessing. The random forest algorithm has hitherto not been employed for estimating air quality parameters, such as relative humidity. In this study, the random forest approach is implemented to estimate the relative humidity as a function of dry- and wet-bulb temperatures. A well-known commercial process simulator called Aspen HYSYS® V10 is linked with MATLAB® version 2019a to establish a data mining environment. The robustness of the prediction model is evaluated against varying wet-bulb depressions. There is high absolute deviation that indicates a lower prediction performance of the model against the higher wet-bulb depression i.e., ~20.0 °C. The random forest model can predict relative humidity with a 1.1% mean absolute deviation compared to the values obtained through Aspen HYSYS. The performance of the RF estimation model is also compared with a well-known support vector regression model. The random forest model demonstrates 74.4% better performance than the support vector machine model for the problem of interest, i.e., relative humidity estimation. This study will significantly help the practitioners in efficient designing of air-dependent energy systems as well as in better environmental management through rigorous prediction of relative humidity.


Assuntos
Mineração de Dados , Aprendizado de Máquina , Algoritmos , Conservação dos Recursos Naturais , Umidade
20.
J Environ Manage ; 290: 112537, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33865159

RESUMO

The generation of huge amounts of food waste due to the increasing population is a serious global issue. The inadequate management of food waste and lack of proper handling approaches have created adverse negative impacts on the environment and the society. The use of traditional disposal (i.e. landfilling) and treatment (i.e. incineration and composting) methods are not considered to be efficient for managing food waste. Thus, anaerobic digestion (AD) has proven to be promising and cost-effective, as an alternative technology, for digesting and converting food waste into renewable energy and useful chemicals. However, mono-digestion of food waste suffers from process inhibition and instability which limit its efficiency. Adding biochar that has high buffering capacity and ensures optimum nutrient balance was shown to enhance biogas/methane production yields. This review reports on the physicochemical characteristics of food waste, the existing problems of food waste treatment in AD as well as the role of biochar amendments on the optimization of critical process parameters and its action mechanisms in AD, which could be a promising means of improving the AD performance. Also, this review provides insights regarding the selection of the desired/appropriate biochar characteristics, i.e. depending on the source of the feedstock and the pyrolysis temperature, and its role in enhancing biogas production and preventing the problem of process instability in the AD system. Finally, this review paper highlights the economic and environmental challenges as well as the future perspectives concerning the application of biochar amendments in AD.


Assuntos
Alimentos , Eliminação de Resíduos , Anaerobiose , Biocombustíveis , Reatores Biológicos , Carvão Vegetal , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...