Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 396(3): 513-524, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36399184

RESUMO

Botulinum toxin A is a well-known neurotransmitter inhibitor with a wide range of applications in modern medicine. Recently, botulinum toxin A preparations have been used in clinical trials to suppress cardiac arrhythmias, especially in the postoperative period. Its antiarrhythmic action is associated with inhibition of the nervous system of the heart, but its direct effect on heart tissue remains unclear. Accordingly, we investigate the effect of botulinum toxin A on isolated cardiac cells and on layers of cardiac cells capable of conducting excitation. Cardiomyocytes of neonatal rat pups and human cardiomyocytes obtained through cell reprogramming were used. A patch-clamp study showed that botulinum toxin A inhibited fast sodium currents and L-type calcium currents in a dose-dependent manner, with no apparent effect on potassium currents. Optical mapping showed that in the presence of botulinum toxin A, the propagation of the excitation wave in the layer of cardiac cells slows down sharply, conduction at high concentrations becomes chaotic, but reentry waves do not form. The combination of botulinum toxin A with a preparation of chitosan showed a stronger inhibitory effect by an order of magnitude. Further, the inhibitory effect of botulinum toxin A is not permanent and disappears after 12 days of cell culture in a botulinum toxin A-free medium. The main conclusion of the work is that the antiarrhythmic effect of botulinum toxin A found in clinical studies is associated not only with depression of the nervous system but also with a direct effect on heart tissue. Moreover, the combination of botulinum toxin A and chitosan reduces the effective dose of botulinum toxin A.


Assuntos
Toxinas Botulínicas , Quitosana , Células-Tronco Pluripotentes Induzidas , Humanos , Ratos , Animais , Miócitos Cardíacos , Animais Recém-Nascidos , Potenciais de Ação , Antiarrítmicos/farmacologia
2.
PLoS Comput Biol ; 15(3): e1006597, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30883540

RESUMO

Cardiac fibrosis occurs in many forms of heart disease and is considered to be one of the main arrhythmogenic factors. Regions with a high density of fibroblasts are likely to cause blocks of wave propagation that give rise to dangerous cardiac arrhythmias. Therefore, studies of the wave propagation through these regions are very important, yet the precise mechanisms leading to arrhythmia formation in fibrotic cardiac tissue remain poorly understood. Particularly, it is not clear how wave propagation is organized at the cellular level, as experiments show that the regions with a high percentage of fibroblasts (65-75%) are still conducting electrical signals, whereas geometric analysis of randomly distributed conducting and non-conducting cells predicts connectivity loss at 40% at the most (percolation threshold). To address this question, we used a joint in vitro-in silico approach, which combined experiments in neonatal rat cardiac monolayers with morphological and electrophysiological computer simulations. We have shown that the main reason for sustainable wave propagation in highly fibrotic samples is the formation of a branching network of cardiomyocytes. We have successfully reproduced the morphology of conductive pathways in computer modelling, assuming that cardiomyocytes align their cytoskeletons to fuse into cardiac syncytium. The electrophysiological properties of the monolayers, such as conduction velocity, conduction blocks and wave fractionation, were reproduced as well. In a virtual cardiac tissue, we have also examined the wave propagation at the subcellular level, detected wavebreaks formation and its relation to the structure of fibrosis and, thus, analysed the processes leading to the onset of arrhythmias.


Assuntos
Coração/fisiologia , Animais , Animais Recém-Nascidos , Arritmias Cardíacas/fisiopatologia , Simulação por Computador , Sistema de Condução Cardíaco/fisiologia , Modelos Cardiovasculares , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...