Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 83(10): 2363-2376, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34032615

RESUMO

Textile wastewater from wet processing units is a major environmental problem. Most chemicals, including dyes, are only partly consumed, resulting in highly colored wastewater containing a variety of chemicals released into the environment. This paper gives information on the current management of textile wastewater in Tanzania. A semiquantitative analysis was done to identify the main types of chemicals used in wet processing units, wastewater characteristics and existing wastewater treatment methods in the textile industry. The performance evaluation of the existing wastewater treatment plants is also discussed. The advantages of integrating constructed wetlands with the existing treatment facilities for textile wastewater are explained. It has been observed that pretreatment and dying/printing of the fabrics are the main two processes that produce wastewater in many textile companies. Main pollutants are chemicals used from pretreatment and materials removed from de-sizing, bleaching and scouring processes. Dyes, printing pigments and dye auxiliaries are the main pollutants from the dyeing/printing process. Most of the textile companies in Tanzania are equipped with effluent treatment plants. Wastewater treatment plants have basically similar units, which are coagulation-flocculation, sedimentation through clarifiers and aerobic reactor. However, their effluents do not meet discharge limits stipulated by the Tanzania Bureau of Standards (TBS).


Assuntos
Poluentes Químicos da Água , Purificação da Água , Corantes , Resíduos Industriais , Tanzânia , Indústria Têxtil , Têxteis , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
2.
Environ Technol ; 39(6): 702-716, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28475410

RESUMO

Surface and groundwater from Pangani River Basin (PRB) were sampled in dry and wet seasons, analysed for dissolved organic and inorganic nutrients (N, P, Si and Urea). There was spatial and seasonal nutrients' variability, with enrichment of dissolved inorganic fractions accumulated from natural and anthropogenic sources. Silicates increased in dry season, whereas nitrate, ammonium, phosphate and urea increased in wet season; except for phosphate, other nutrients increased from upstream to the river mouth. High rate of chemical weathering possibly due to tropical climate and volcanic rocks has caused PRB to have higher concentration of silicates than average freshwater African Rivers. Contribution of PRB to the coast of Indian Ocean was 2.6, 39.0, 45.2, 67.4 and 5444.8 (mol/km2/yr) for nitrite, phosphate, ammonium, nitrate and silicates, respectively, which were lower than most of the tropical rivers in the world. Levels of nitrate and phosphate for most of the stations were higher than recommended levels for aquatic ecosystem health. Furthermore, observed hypoxia condition in some stations threatens aquatic life. This study recommends the efficient use of fertilizers to reduce nutrients' uptake into the lakes and rivers so as to meet the recommended level for aquatic and human health.


Assuntos
Monitoramento Ambiental , Rios , Poluentes Químicos da Água/análise , Ecossistema , Humanos , Oceano Índico , Estações do Ano , Tanzânia
3.
Water Sci Technol ; 66(12): 2808-13, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23109602

RESUMO

In order to determine the influence of flow velocity on the removal of faecal coliforms (FC) in constructed wetlands (CWs), removal rate constants of FC (k(FC)) were studied at various flow velocities (u). Membrane filtration technique was used during analysis. Values of k(FC) were determined using Reed's equation of pathogen removal; the results were compared with the plug flow equation. According to Reed's equation, k(FC) values ranged from 1.6 day⁻¹ at a velocity of 4 m/day to 34.5 day⁻¹ at a velocity of 42.9 m/day. The removal rates correlated positively with flow velocity (r = 0.84, p < 0.05). On assuming a plug flow equation, removal rates constants ranged from 0.77 to 11.69 day⁻¹; a more positive correlation (r = 0.93, p < 0.05) was observed. Optimum removal rate constants were observed for the velocity ranging 36 to 43 m/day. Generally, the increase of flow velocity improved FC removal rate constants: implying that pathogen removals are influenced by diffusion of the microorganisms into the biofilms on CW media. The velocity dependent approach together with the plug flow equation is therefore proposed for incorporation in the design of CW in a tropical climate where temperature variations are minor.


Assuntos
Enterobacteriaceae/isolamento & purificação , Fezes/microbiologia , Reologia , Movimentos da Água , Áreas Alagadas , Biofilmes , Concentração de Íons de Hidrogênio , Cinética , Temperatura , Fatores de Tempo
4.
Water Sci Technol ; 63(12): 3039-45, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22049736

RESUMO

The effect of mass transfer on the removal rate constants of BOD5, NH3, NO3 and TKN has been investigated in a Horizontal Subsurface Flow Constructed Wetland (HSSFCW) planted with Phragmites mauritianus. The plug flow model was assumed and the inlet and outlet concentrations were used to determine the observed removal rate constants. Mass transfer effects were studied by assessing the influence of interstitial velocity on pollutant removal rates in CW cells of different widths. The flow velocities varied between 3-46 m/d. Results indicate that the observed removal rate constants are highly influenced by the flow velocity. Correlation of dimensionless groups namely Reynolds Number (Re), Sherwood Number (Sh) and Schmidt Number (Sc) were applied and log-log plots of rate constants against velocity yielded straight lines with values beta = 0.87 for BOD5, 1.88 for NH3, 1.20 for NO3 and 0.94 for TKN. The correlation matched the expected for packed beds although the constant beta was higher than expected for low Reynolds numbers. These results indicate that the design values of rate constants used to size wetlands are influenced by flow velocity. This paper suggests the incorporation of mass transfer into CW design procedures in order to improve the performance of CW systems and reduce land requirements.


Assuntos
Clima Tropical , Movimentos da Água , Purificação da Água/métodos , Áreas Alagadas , Análise da Demanda Biológica de Oxigênio , Arquitetura de Instituições de Saúde , Hidrodinâmica , Modelos Teóricos , Tanzânia , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/normas
5.
Water Sci Technol ; 63(5): 924-30, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21411942

RESUMO

Performance of Constructed Wetland planted with vetiver grasses for the treatment of leachate was investigated in controlled experiments involving horizontal subsurface flow constructed wetland (HSSFCW). The HSSFCW experimental unit had two cells, one planted with vetiver grasses and another bare. Both units were packed with limestone gravel as substrate and were operated with equal hydraulic loading and hydraulic retention time. Collected samples of influents and effluents were analysed for COD, Cr, Pb, Fe and pH. The results showed that vetiver grasses tolerated leachate with high loading of COD up to 14,000 mg L(-1). The planted cell outperformed the unplanted cell in terms of COD, Cr, Pb and Fe removal. The systems showed optimum points for COD and Pb removal as a function of feed concentrations. The optimum COD removal values of 210 mgm(-2) day(-1) at feed COD concentration of 11,200 mg COD L(-1) and 89 mgm(-2) day(-1) at feed concentration of 7,200 mg COD L(-1) were obtained for planted and unplanted cells respectively. Similarly Pb removal values of 0.0132 mgm(-2) day(-1) at 1.0 mg Pb L(-1) and 0.0052 mgm(-2) day(-1) at 1.04 mgPb L(-1) were obtained for planted and unplanted units respectively. Removal of Fe as a function of feed Fe concentration showed a parabolic behaviour but Cr removal showed linear behaviour with feed Cr concentrations in both units. The system showed very good removal efficiencies with Cr and Fe but poor efficiencies were recorded for Pb.


Assuntos
Vetiveria/metabolismo , Poluentes Químicos da Água/metabolismo , Áreas Alagadas , Biodegradação Ambiental , Vetiveria/química , Concentração de Íons de Hidrogênio , Metais Pesados/química , Metais Pesados/metabolismo , Oxigênio/metabolismo , Temperatura , Fatores de Tempo , Poluentes Químicos da Água/química , Purificação da Água
6.
Water Sci Technol ; 48(5): 85-92, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14621151

RESUMO

Laboratory and fieldwork studies were carried out to evaluate the potential of pumice soil for use as a wetland substrate in wastewater treatment. The composition of pumice soil was analysed by x-ray fluorescence (XRF) and x-ray diffraction (XRD) techniques. Adsorption kinetic studies were carried out in a semi-batch recycle system. Fieldwork tests were carried out on Subsurface Flow Constructed Wetland (SSFCW) cells planted with Phragmites mauritianus and Vetiveria zizanioides. The results have shown that pumice soil composition contains among other elements Al, Ca, Fe and Mg, which are positive indicators for phosphorus adsorption. The main minerals observed by XRD were augite, hematite, and sodium titanium silicate. Phosphorus adsorption kinetics have shown that phosphorus is adsorbed on pumice soil following first order kinetics and the adsorption was highly influenced by mass transfer. Approximately 3% of the phosphorus was removed by plant uptake.


Assuntos
Ecossistema , Solo , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Filtração , Poaceae/crescimento & desenvolvimento , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...