Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36824768

RESUMO

INTRODUCTION: In this study, we explore the role of oxidative stress produced by NOX2-containing NADPH oxidase as a molecular mechanism causing capillary stalling and cerebral blood flow deficits in the APP/PS1 mouse model of AD. METHODS: We inhibited NOX2 in APP/PS1 mice by administering a 10 mg/kg dose of the peptide inhibitor gp91-ds-tat i.p., for two weeks. We used in vivo two-photon imaging to measure capillary stalling, penetrating arteriole flow, and vascular inflammation. We also characterized short-term memory function and gene expression changes in cerebral microvessels. RESULTS: We found that after NOX2 inhibition capillary stalling, as well as parenchymal and vascular inflammation, were significantly reduced. In addition, we found a significant increase in penetrating arteriole flow, followed by an improvement in short-term memory, and downregulation of inflammatory gene expression pathways. DISCUSSION: Oxidative stress is a major mechanism leading to microvascular dysfunction in AD, and represents an important therapeutic target.

2.
Brain ; 145(4): 1449-1463, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35048960

RESUMO

Increased incidence of stalled capillary blood flow caused by adhesion of leucocytes to the brain microvascular endothelium leads to a 17% reduction of cerebral blood flow and exacerbates short-term memory loss in multiple mouse models of Alzheimer's disease. Here, we report that vascular endothelial growth factor (VEGF) signalling at the luminal side of the brain microvasculature plays an integral role in the capillary stalling phenomenon of the APP/PS1 mouse model. Administration of the anti-mouse VEGF-A164 antibody, an isoform that inhibits blood-brain barrier hyperpermeability, reduced the number of stalled capillaries within an hour of injection, leading to an immediate increase in average capillary blood flow but not capillary diameter. VEGF-A inhibition also reduced the overall endothelial nitric oxide synthase protein concentrations, increased occludin levels and decreased the penetration of circulating Evans Blue dye across the blood-brain barrier into the brain parenchyma, suggesting increased blood-brain barrier integrity. Capillaries prone to neutrophil adhesion after anti-VEGF-A treatment also had lower occludin concentrations than flowing capillaries. Taken together, our findings demonstrate that VEGF-A signalling in APP/PS1 mice contributes to aberrant endothelial nitric oxide synthase /occludin-associated blood-brain barrier permeability, increases the incidence of capillary stalls, and leads to reductions in cerebral blood flow. Reducing leucocyte adhesion by inhibiting luminal VEGF signalling may provide a novel and well-tolerated strategy for improving brain microvascular blood flow in Alzheimer's disease patients.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Capilares , Permeabilidade Capilar , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Humanos , Camundongos , Óxido Nítrico Sintase Tipo III/metabolismo , Ocludina/metabolismo , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Sci Rep ; 10(1): 9884, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555372

RESUMO

Obesity is linked to increased risk for and severity of Alzheimer's disease (AD). Cerebral blood flow (CBF) reductions are an early feature of AD and are also linked to obesity. We recently showed that non-flowing capillaries, caused by adhered neutrophils, contribute to CBF reduction in mouse models of AD. Because obesity could exacerbate the vascular inflammation likely underlying this neutrophil adhesion, we tested links between obesity and AD by feeding APP/PS1 mice a high fat diet (Hfd) and evaluating behavioral, physiological, and pathological changes. We found trends toward poorer memory performance in APP/PS1 mice fed a Hfd, impaired social interactions with either APP/PS1 genotype or a Hfd, and synergistic impairment of sensory-motor function in APP/PS1 mice fed a Hfd. The Hfd led to increases in amyloid-beta monomers and plaques in APP/PS1 mice, as well as increased brain inflammation. These results agree with previous reports showing obesity exacerbates AD-related pathology and symptoms in mice. We used a crowd-sourced, citizen science approach to analyze imaging data to determine the impact of the APP/PS1 genotype and a Hfd on capillary stalling and CBF. Surprisingly, we did not see an increase in the number of non-flowing capillaries or a worsening of the CBF deficit in APP/PS1 mice fed a Hfd as compared to controls, suggesting that capillary stalling is not a mechanistic link between a Hfd and increased severity of AD in mice. Reducing capillary stalling by blocking neutrophil adhesion improved CBF and short-term memory function in APP/PS1 mice, even when fed a Hfd.


Assuntos
Doença de Alzheimer/patologia , Circulação Cerebrovascular/fisiologia , Dieta Hiperlipídica , Neurônios/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Comportamento Animal , Vasos Sanguíneos/diagnóstico por imagem , Vasos Sanguíneos/fisiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Masculino , Memória de Curto Prazo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Presenilina-1/genética
4.
J Cereb Blood Flow Metab ; 40(7): 1441-1452, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31495298

RESUMO

Alzheimer's disease is associated with a 20-30% reduction in cerebral blood flow. In the APP/PS1 mouse model of Alzheimer's disease, inhibiting neutrophil adhesion using an antibody against the neutrophil specific protein Ly6G was recently shown to drive rapid improvements in cerebral blood flow that was accompanied by an improvement in performance on short-term memory tasks. Here, in a longitudinal aging study, we assessed how far into disease development a single injection of anti-Ly6G treatment can acutely improve short-term memory function. We found that APP/PS1 mice as old as 15-16 months had improved performance on the object replacement and Y-maze tests of spatial and working short-term memory, measured at one day after anti-Ly6G treatment. APP/PS1 mice at 17-18 months of age or older did not show acute improvements in cognitive performance, although we did find that capillary stalls were still reduced and cerebral blood flow was still increased by 17% in 21-22-months-old APP/PS1 mice given anti-Ly6G antibody. These data add to the growing body of evidence suggesting that cerebral blood flow reductions are an important contributing factor to the cognitive dysfunction associated with neurodegenerative disease. Thus, interfering with neutrophil adhesion could be a new therapeutic approach for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Cognição , Animais , Antígenos Ly/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Memória de Curto Prazo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...