Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400265, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760951

RESUMO

In organic field-effect transistors (OFETs) using disordered organic semiconductors, interface traps that hinder efficient charge transport, stability, and device performance are inevitable. Benchmark poly(9,9-dioctylfuorene-co-bithiophene) (F8T2) liquid-crystalline polymer semiconductor has been extensively investigated for organic electronic devices due to its promising combination of charge transport and light emission properties. This study demonstrates that high-capacitance single-layered ionic polyurethane (PU) dielectrics enable enhanced charge transport in F8T2 OFETs. The ionic PU dielectrics are composed of a mild blending of PU ionogel and PU solution, thereby forming a solid-state film with robust interfacial characteristics with semiconductor layer and gate electrode in OFETs and measuring high capacitance values above 10 µF cm-2 owing to the combined dipole polarization and electric double layer formation. The optimized fabricated ionic PU-gated OFETs exhibit a low-voltage operation at -3 V with a remarkable hole mobility of over 5 cm2 V-1 s-1 (average = 2.50 ± 1.18 cm2 V-1 s-1), which is the highest mobility achieved so far for liquid-crystalline F8T2 OFETs. This device also provides excellent bias-stable characteristics in ambient air, exhibiting a negligible threshold voltage shift of -0.03 V in the transfer curves after extended bias stress, with a reduced trap density.

2.
Macromol Rapid Commun ; 45(6): e2300634, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38124531

RESUMO

Tunability in electronic and optical properties has been intensively explored for developing conjugated polymers and their applications in organic and perovskite-based electronics. Particularly, the charge carrier mobility of conjugated polymer semiconductors has been deemed to be a vital figure-of-merit for achieving high-performance organic field-effect transistors (OFETs). In this study, the systematic hole carrier mobility improvement of benzo[1,2-b:4,5-b']dithiophene-based conjugated polymer in perovskite-functionalized organic transistors is demonstrated. In conventional OFETs with a poly(methyl methacrylate) (PMMA) gate dielectric, improvements in hole mobility of 0.019 cm2 V-1 s-1 are measured using an off-center spin-coating technique, which exceeds those of on-center counterparts (0.22 ± 0.07 × 10-2 cm2 V-1 s-1). Furthermore, the mobility drastically increases by adopting solid-state electrolyte gating, corresponding to 2.99 ± 1.03 cm2 V-1 s-1 for the control, and the best hole mobility is 8.03 cm2 V-1 s-1 (average ≈ 6.94 ± 0.59 cm2 V-1 s-1) for perovskite-functionalized OFETs with a high current on/off ratio of >106. The achieved device performance would be attributed to the enhanced film crystallinity and charge carrier density in the hybrid perovskite-functionalized organic transistor channel, resulting from the high-capacitance electrolyte dielectric.


Assuntos
Compostos de Cálcio , Óxidos , Polímeros , Titânio , Transistores Eletrônicos , Semicondutores , Eletrólitos , Polimetil Metacrilato
3.
Macromol Rapid Commun ; 44(8): e2200954, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36661127

RESUMO

The charge carrier mobility of organic field-effect transistors (OFETs) has been remarkably improved through several engineering approaches and techniques by targeting pivotal parts. Herein, an ultrathin perovskite channel layer that boosts the field-effect mobility of conjugated polymer OFETs by forming perovskite-conjugated polymer hybrid semiconducting channel is introduced. The optimized lead-iodide-based perovskite-conjugated polymer hybrid channel transistors show enhanced hole mobility of over 4 cm2  V-1  s-1 (average = 2.10 cm2  V-1  s-1 ) with high reproducibility using a benchmark poly(3-hexylthiophene) (P3HT) polymer and employing high-k fluorinated polymer dielectrics. A significant hole carrier mobility enhancement of ≈200-400% in benzo[1,2-b:4,5:b']dithiophene (BDT)-based conjugated polymers is also demonstrated by exploring certain interactive groups with perovskite. This significant enhancement in the transistor performance is attributed to the increased charge carrier density in the hybrid semiconducting channel and the perovskite-polymer interactions. The findings of this paper demonstrate an exceptional engineering approach for carrier mobility enhancement in hybrid perovskite-conjugated-polymer-based electronic devices.


Assuntos
Polímeros de Fluorcarboneto , Polímeros , Reprodutibilidade dos Testes , Compostos de Cálcio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...