Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(18): e36916, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39309963

RESUMO

Common bean yields in Malawi remain low, primarily due to the use of low-yielding, recycled local seeds by most smallholder farmers. The low uptake of certified bean seed is attributed to limited incentives from the private sector. This study hypothesizes that the sustainable adoption of market-preferred varieties can be achieved by synchronizing and linking seed production to the grain market through committed value chain actors in a private sector-led multi-stakeholder platform. This paper examines the role of private sector-led multi-stakeholder platforms in the supply of certified common bean seed in Malawi. The research draws on both qualitative and quantitative primary data collected through a semi-structured questionnaire and interviews with key informants. Data were analyzed using an Ordinary Least Squares (OLS) regression model. The results indicate that several variables representing membership in multi-stakeholder platforms (MSPs) significantly affect the supply of certified common bean seed. Participation in MSPs, contractual arrangements, market structure, extension services, and seed demonstrations positively influenced seed supply. The findings underscore the need for a well-coordinated multi-stakeholder platform to enhance the supply of certified common bean seed, supported by effective policies and incentives from policymakers.

2.
PLoS One ; 18(12): e0295773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38096255

RESUMO

Genetic resources of tepary bean (Phaseolus acutifolius A. Gray) germplasm collections are not well characterized due to a lack of dedicated genomic resources. There is a need to assemble genomic resources specific to tepary bean for germplasm characterization, heterotic grouping, and breeding. Therefore, the objectives of this study were to deduce the genetic groups in tepary bean germplasm collection using high-density Diversity Array Technology (DArT) based single nucleotide polymorphism (SNP) markers and select contrasting genotypes for breeding. Seventy-eight tepary bean accessions were genotyped using 10527 SNPs markers, and genetic parameters were estimated. Population structure was delineated using principal component and admixture analyses. A mean polymorphic information content (PIC) of 0.27 was recorded, indicating a relatively low genetic resolution of the developed SNPs markers. Low genetic variation (with a genetic distance [GD] = 0.32) existed in the assessed tepary bean germplasm collection. Population structure analysis identified five sub-populations through sparse non-negative matrix factorization (snmf) with high admixtures. Analysis of molecular variance indicated high genetic differentiation within populations (61.88%) and low between populations (38.12%), indicating high gene exchange. The five sub-populations exhibited variable fixation index (FST). The following genetically distant accessions were selected: Cluster 1:Tars-Tep 112, Tars-Tep 10, Tars-Tep 23, Tars-Tep-86, Tars-Tep-83, and Tars-Tep 85; Cluster 3: G40022, Tars-Tep-93, and Tars-Tep-100; Cluster 5: Zimbabwe landrace, G40017, G40143, and G40150. The distantly related and contrasting accessions are useful to initiate crosses to enhance genetic variation and for the selection of economic traits in tepary bean.


Assuntos
Phaseolus , Polimorfismo de Nucleotídeo Único , Phaseolus/genética , Melhoramento Vegetal , Deriva Genética , Alcatrões , Variação Genética
3.
PLoS One ; 16(4): e0250729, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33914796

RESUMO

The bean fly (Ophiomyia spp) is a key insect pest causing significant crop damage and yield loss in common bean (Phaseolus vulgaris L., 2n = 2x = 22). Development and deployment of agronomic superior and bean fly resistant common bean varieties aredependent on genetic variation and the identification of genes and genomic regions controlling economic traits. This study's objective was to determine the population structure of a diverse panel of common bean genotypes and deduce associations between bean fly resistance and agronomic traits based on single nucleotide polymorphism (SNP) markers. Ninety-nine common bean genotypes were phenotyped in two seasons at two locations and genotyped with 16 565 SNP markers. The genotypes exhibited significant variation for bean fly damage severity (BDS), plant mortality rate (PMR), and pupa count (PC). Likewise, the genotypes showed significant variation for agro-morphological traits such as days to flowering (DTF), days to maturity (DTM), number of pods per plant (NPP), number of seeds per pod (NSP), and grain yield (GYD). The genotypes were delineated into two populations, which were based on the Andean and Mesoamerican gene pools. The genotypes exhibited a minimum membership coefficient of 0.60 to their respective populations. Eighty-three significant (P<0.01) markers were identified with an average linkage disequilibrium of 0.20 at 12Mb across the 11 chromosomes. Three markers were identified, each having pleiotropic effects on two traits: M100049197 (BDS and NPP), M3379537 (DTF and PC), and M13122571 (NPP and GYD). The identified markers are useful for marker-assisted selection in the breeding program to develop common bean genotypes with resistance to bean fly damage.


Assuntos
Dípteros/fisiologia , Estudo de Associação Genômica Ampla , Phaseolus/genética , Phaseolus/fisiologia , Animais , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
4.
PLoS One ; 15(12): e0243238, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33338076

RESUMO

Knowledge of genetic diversity in plant germplasm and the relationship between genetic factors and phenotypic expression is vital for crop improvement. This study's objectives were to understand the extent of genetic diversity and population structure in 60 common bean genotypes from East and Southern Africa. The common bean genotypes exhibited significant (p<0.05) levels of variability for traits such as days to flowering (DTF), days to maturity (DTM), number of pods per plant (NPP), number of seeds per pod (NSP), and grain yield per hectare in kilograms (GYD). About 47.82 per cent of the variation among the genotypes was explained by seven principal components (PC) associated with the following agronomic traits: NPP, NFF (nodes to first flower), DTF, GH (growth habit) and GYD. The SNP markers revealed mean gene diversity and polymorphic information content values of 0.38 and 0.25, respectively, which suggested the presence of considerable genetic variation among the assessed genotypes. Analysis of molecular variance showed that 51% of the genetic variation were between the gene pools, while 49% of the variation were within the gene pools. The genotypes were delineated into two distinct groups through the population structure, cluster and phylogenetic analyses. Genetically divergent genotypes such as DRK57, MW3915, NUA59, and VTTT924/4-4 with high yield and agronomic potential were identified, which may be useful for common bean improvement.


Assuntos
Grão Comestível/genética , Phaseolus/genética , Sementes/genética , África Oriental , África Austral , Grão Comestível/anatomia & histologia , Variação Genética , Genótipo , Phaseolus/anatomia & histologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Sementes/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA