Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 21(5)2016 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-27213304

RESUMO

The acetalization of six different types of glycerol including pure, wet, and crude-like grade compounds of compositions simulating those of crude glycerols produced by the biodiesel manufacture, was carried out with two model ketones such as acetone and 2-butanone. The reaction was investigated under continuous-flow (CF) conditions through a comparative analysis of an already known acetalization catalyst such as Amberlyst 36 (A36), and aluminum fluoride three hydrate (AlF3·3H2O, AF) whose use was never previously reported for the synthesis of acetals. At 10 bar and 25 °C, A36 was a highly active catalyst allowing good-to-excellent conversion (85%-97%) and selectivity (99%) when either pure or wet glycerol was used as a reagent. This catalyst however, proved unsuitable for the CF acetalization of crude-like glycerol (CG) since it severely and irreversibly deactivated in a few hours by the presence of low amounts of NaCl (2.5 wt %) which is a typical inorganic impurity of raw glycerol from the biorefinery. Higher temperature and pressure (up to 100 °C and 30 bar) were not successful to improve the outcome. By contrast, at 10 bar and 100 °C, AF catalyzed the acetalization of CG with both acetone and 2-butanone, yielding stable conversion and productivity up to 78% and 5.6 h(-1), respectively. A XRD analysis of fresh and used catalysts proved that the active phase was a solid solution (SS) of formula Al2[F1-x(OH)x]6(H2O)y present as a component of the investigated commercial AF sample. A hypothesis to explain the role of such SS phase was then formulated based on the Brønsted acidity of OH groups of the solid framework. Overall, the AF catalyst allowed not only a straightforward upgrading of CG to acetals, but also a more cost-efficient protocol avoiding the expensive refining of raw glycerol itself.


Assuntos
Acetais/síntese química , Compostos de Alumínio/química , Fluoretos/química , Glicerol/química , Acetais/química , Acetona/química , Biocombustíveis , Butanonas/química , Catálise , Temperatura Alta , Pressão
2.
Molecules ; 21(2): 170, 2016 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-26840287

RESUMO

The caprylic, lauric, palmitic and stearic esters of solketal and glycerol formal were synthesized with high selectivity and in good yields by a solvent-free acid catalyzed procedure. No acetal hydrolysis was observed, notwithstanding the acidic reaction conditions.


Assuntos
Acetais/química , Dioxolanos/química , Ácidos Graxos/síntese química , Catálise , Ésteres/síntese química , Ésteres/química , Ácidos Graxos/química , Estrutura Molecular , Solventes
3.
ChemSusChem ; 8(23): 3963-6, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26383135

RESUMO

The methyltriphenylphosphonium methylcarbonate salt [Ph3 PCH3 ][CH3 OCO2 ], obtained directly by quaternarization of triphenylphosphine with dimethylcarbonate, is a latent ylide that promotes Wittig vinylation of aldehydes and ketones. Alkenes are obtained simply by mixing [Ph3 PCH3 ][CH3 OCO2 ] and the carbonyl and heating in a solvent (no base, no halides, and no inorganic byproducts). Deuterium exchange experiments and the particularly short anion-cation distance measured by XRD in [Ph3 PCH3 ][CH3 OCO2 ] allowed to explain the nature and reactivity of this species. Green chemistry metrics (atom economy, mass index, environmental factor) indicate that this vinylation procedure is more efficient than comparable ones. Deuterated [Ph3 PCD3 ][CH3 OCO2 ] promoted the synthesis of deuterated olefins.


Assuntos
Alcenos/química , Oniocompostos/química , Compostos de Tritil/química , Indicadores e Reagentes/química , Modelos Moleculares , Conformação Molecular
4.
Org Biomol Chem ; 12(24): 4143-55, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24825024

RESUMO

At 90-120 °C, in the presence of methylcarbonate and bicarbonate methyltrioctylphosphonium salts as catalysts ([P8881][A]; [A] = MeOCO2 and HOCO2), the transesterification of non-toxic dimethyl- and diethyl-carbonate (DMC and DEC, respectively) with 1,X-diols (2 ≤ X ≤ 6) proceeds towards the formation of cyclic and linear products. In particular, 1,2-propanediol and ethylene glycol afford propylene- and ethylene-carbonate with selectivity and yields up to 95 and 90%, respectively; while, the reaction of DMC with higher diols such 1,3-butanediol, 2-methyl-1,3-propanediol, 1,3-propanediol, 2,2-dimethyl, 1,3-propanediol, 1,4-butanediol and 1,6-hexanediol produce linear C8-C10 dicarbonates of general formula MeOC(O)O∼∼∼OC(O)OMe as the almost exclusive products. Of note, these dicarbonate derivatives are not otherwise accessible in good yields by other conventional base catalyzed methods. Among 1,3-diols, the only exception was 2-methyl 2,4-pentandiol that yields the corresponding cyclic carbonate, i.e. 4,4,6-trimethyl-1,3-dioxan-2-one. In no one case, polycarbonates are observed. Such remarkable differences of product distributions are ascribed to the structure (branching and relative position of OH groups) of diols and to the role of cooperative (nucleophilic and electrophilic) catalysis which has been proved for onium salts. The investigated carbonate salts are not only effective in amounts as low as 0.5 mol%, but they are highly stable and recyclable.


Assuntos
Álcoois/química , Carbonatos/química , Compostos Organofosforados/química , Sais/química , Catálise , Ciclização , Esterificação , Líquidos Iônicos/química , Espectroscopia de Prótons por Ressonância Magnética
5.
Org Biomol Chem ; 10(32): 6569-78, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22777138

RESUMO

Methyl trioctylphosphonium methyl carbonate [P(8881)](+)[MeOCO(2)](-) was prepared by the alkylation of trioctyl phosphine with the non-toxic dimethyl carbonate. This salt was a convenient source to synthesize different ionic liquids where the methyl trioctylphosphonium cation was coupled to weakly basic anions such as bicarbonate, acetate, and phenolate. At 90-220 °C, all these compounds [P(8881)](+)X(-); X = MeOCO(2); HOCO(2); AcO; PhO were excellent organocatalysts for the transesterification of dimethyl and diethyl carbonate with primary and secondary alcohols, including benzyl alcohol, cyclopentanol, cyclohexanol, and the rather sterically hindered menthol. Conditions were optimized to operate with very low catalyst loadings up to 1 mol% and to obtain non-symmetric dialkyl carbonates (ROCO(2)R'; R = Me, Et) with selectivity up to 99% and isolated yields >90%. The catalytic performance of the investigated ionic liquids was discussed through a cooperative mechanism of simultaneous activation of both electrophilic and nucleophilic reactants.

6.
Chem Commun (Camb) ; 48(42): 5178-80, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22517474

RESUMO

The anionic and the cationic partners of ionic liquids may act cooperatively and independently as nucleophilic and electrophilic catalysts. This ambiphilic propensity was demonstrated by kinetically discriminating the contributions of the anion (nucleophilic catalyst) and of the cation (electrophilic catalyst) to the solvent-free Baylis-Hillman dimerization of cyclohexenone catalysed by ionic liquids.

7.
J Org Chem ; 77(4): 1805-11, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22260372

RESUMO

Phosphonium ionic liquids exchanged with bicarbonate and methylcarbonate anions (CILs) exhibit catalytic performances comparable to those of sterically hindered (non nucleophilic) organosuperbases such as DBU. At 25-50 °C, under solventless conditions, CILs efficiently catalyze the Henry addition of different aldehydes and ketones to nitroalkanes: not only they allow the selective formation of nitroaldols but they unlock a novel high-yielding access to dinitromethyl derivatives of ketones.

8.
Org Biomol Chem ; 8(22): 5187-98, 2010 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-20844790

RESUMO

At T≥ 140 °C, different primary aromatic amines (pX-C(6)H(4)NH(2); X = H, OCH(3), CH(3), Cl) react with both ethylene- and propylene-carbonates to yield a chemoselective N-alkylation process: bis-N-(2-hydroxyalkyl)anilines [pX-C(6)H(4)N(CH(2)CH(R)OH)(2); R = H, CH(3)] are the major products and the competitive formation of carbamates is substantially ruled out. At 140 °C, under solventless conditions, the model reaction of aniline with ethylene carbonate goes to completion by simply mixing stoichiometric amounts of the reagents. However, a class of phosphonium ionic liquids (PILs) such as tetraalkylphosphonium halides and tosylates turn out to be active organocatalysts for both aniline and other primary aromatic amines. A kinetic analysis monitored by (13)C NMR spectroscopy, shows that bromide exchanged PILs are the most efficient systems, able to impart a more than 8-fold acceleration to the reaction. The reactions of propylene carbonate take place at a higher temperature than those of ethylene carbonate, and only in the presence of PIL catalysts. A mechanism based on the Lewis acidity of tetraalkylphosphonium cations and the nucleophilicity of halide anions has been proposed to account for both the reaction chemoselectivity and the function of the catalysts.


Assuntos
Aminas/química , Compostos de Anilina/síntese química , Dioxolanos/química , Hidrocarbonetos Aromáticos/química , Líquidos Iônicos/química , Compostos Organofosforados/química , Fosfinas/química , Propano/análogos & derivados , Alquilação , Compostos de Anilina/química , Catálise , Cinética , Propano/química , Temperatura , Zeolitas/química
9.
Chemistry ; 15(45): 12273-82, 2009 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-19810060

RESUMO

This article describes 1) a methodology for the green synthesis of a class of methylammonium and methylphosphonium ionic liquids (ILs), 2) how to tune their acid-base properties by anion exchange, 3) complete neat-phase NMR spectroscopic characterisation of these materials and 4) their application as active organocatalysts for base-promoted carbon-carbon bond-forming reactions. Methylation of tertiary amines or phosphines with dimethyl carbonate leads to the formation of the halogen-free methyl-onium methyl carbonate salts, and these can be easily anion-exchanged to yield a range of derivatives with different melting points, solubility, acid-base properties, stability and viscosity. Treatment with water, in particular, yields bicarbonate-exchanged liquid onium salts. These proved strongly basic, enough to efficiently catalyse the Michael reaction; experiments suggest that in these systems the bicarbonate basicity is boosted by two orders of magnitude with respect to inorganic bicarbonate salts. These basic ionic liquids used in catalytic amounts are better even than traditional strong organic bases. The present work also introduces neat NMR spectroscopy of the ionic liquids as a probe for solute-solvent interactions as well as a tool for characterisation. Our studies show that high catalytic efficacy of functional ionic liquids can be achieved by integrating their green synthesis, along with a fine-tuning of their structure. Demonstrating that ionic liquid solvents can be made by a truly green procedure, and that their properties and reactivity can be tailored to the point of bridging the gap between their use as solvents and as catalysts.

10.
J Org Chem ; 73(21): 8520-8, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18839994

RESUMO

At 40-60 degrees C, in the presence of heterogeneous catalysts based on Al2O3, supercritical carbon dioxide not only acts as a good solvent for the reaction of aromatic and aliphatic aldehydes with 1-nitroalkanes but, most importantly, it also allows the selectivity to be tuned between the competitive formation of beta-nitroalcohols and nitroalkenes (from the Henry reaction and the nitroaldol condensation, respectively). In particular, when the pressure (and the density) of the supercritical phase is enhanced from 80 to 140 bar, the nitroalkene's selectivity increases, on average, from approximately 60 to >90%. Experiments show that, in the same pressure range, a steep increase of the concentration profiles of reactant aldehydes takes place. By contrast, under solvent-free conditions, the reaction usually proceeds with a higher conversion, but nitroalkanols are the major products.

11.
Dalton Trans ; (46): 5441-52, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-18026594

RESUMO

Trichlorostannyl complexes [M(SnCl3)(bpy)2P]BPh4 [M = Ru, P = P(OEt)(3), 1a PPh(OEt)2 1b; M = Os, P = P(OEt)3 2; bpy = 2,2'-bipyridine] were prepared by allowing chloro complexes [MCl(bpy)2P]BPh4 to react with SnCl2 in 1,2-dichloroethane. Bis(trichlorostannyl) compounds Ru(SnCl3)2(N-N)P2 [N-N = bpy, P = P(OEt)3 3a, PPh(OEt)2 3b; N-N = 1,10-phenanthroline (phen), P = P(OEt)3 4] were also prepared by reacting [RuCl(N-N)P3]BPh4 precursors with SnCl2.2H2O in ethanol. Treatment of both mono- 1a, 2 and bis 3a trichlorostannyl complexes with NaBH4 afforded mono- and bis(trihydridestannyl) derivatives [M(SnH3)(bpy)2P]BPh4 5, 6 and Ru(SnH3)2(bpy)P2 7[P = P(OEt)3], respectively. Treatment of 1a, 2 with MgBrMe gave the trimethylstannyl complexes [M(SnMe3)(bpy)2P]BPh4 8, 9 and treatment of 3a afforded the bis(stannyl) Ru(SnClMe2)2(bpy)P2 10 derivative. Alkynylstannyl complexes [M{Sn(C triple bond CR)3}(bpy)2P]BPh4 11-13 and Ru[Sn(C triple bond CR)3]2(N-N)P2 14-17(R = p-tolyl, Bu t; N-N = bpy, phen) were also prepared by allowing trichlorostannyl compounds 1-4 to react with Li+[RC triple bond C]* in thf. The complexes were characterised spectroscopically and by the X-ray crystal structure determination of [Ru(SnMe3)(bpy)2{P(OEt)3}]BPh4 derivative.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...