Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(3)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35334776

RESUMO

Understanding the mechanism of particle transport and sedimentation in pulmonary alveolus is important for deciphering the causes of respiratory diseases and helping the development of drug delivery. In this study, taking advantage of the microfluidic technique, an experimental platform was developed to study particle behavior in a rhythmically expanding alveolar chip for a sufficient number of cycles. The alveolar flow patterns at different generations were measured for two cases with the gravity direction parallel or vertical to the alveolar duct. Affected by both the vortex flow inside the alveoli and the shear flow in the duct simultaneously, it was observed that particles inside the alveoli either escaped from the inlet of the alveolar duct or stayed in the alveoli, revealing the irreversibility of particle transport in the alveoli. At the earlier acinar generations, particles were inclined to deposit on the distal alveolar wall. The settling rates of particles of different sizes in the alveoli were also compared. This study provides valuable data for understanding particle transport and sedimentation in the alveoli.

2.
Sci Adv ; 7(25)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34134987

RESUMO

We propose a universal method for data-driven modeling of complex nonlinear dynamics from time-resolved snapshot data without prior knowledge. Complex nonlinear dynamics govern many fields of science and engineering. Data-driven dynamic modeling often assumes a low-dimensional subspace or manifold for the state. We liberate ourselves from this assumption by proposing cluster-based network modeling (CNM) bridging machine learning, network science, and statistical physics. CNM describes short- and long-term behavior and is fully automatable, as it does not rely on application-specific knowledge. CNM is demonstrated for the Lorenz attractor, ECG heartbeat signals, Kolmogorov flow, and a high-dimensional actuated turbulent boundary layer. Even the notoriously difficult modeling benchmark of rare events in the Kolmogorov flow is solved. This automatable universal data-driven representation of complex nonlinear dynamics complements and expands network connectivity science and promises new fast-track avenues to understand, estimate, predict, and control complex systems in all scientific fields.

3.
Phys Rev E ; 94(1-1): 012214, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27575130

RESUMO

We study the modeling and prediction of dynamical systems based on conventional models derived from measurements. Such algorithms are highly desirable in situations where the underlying dynamics are hard to model from physical principles or simplified models need to be found. We focus on symbolic regression methods as a part of machine learning. These algorithms are capable of learning an analytically tractable model from data, a highly valuable property. Symbolic regression methods can be considered as generalized regression methods. We investigate two particular algorithms, the so-called fast function extraction which is a generalized linear regression algorithm, and genetic programming which is a very general method. Both are able to combine functions in a certain way such that a good model for the prediction of the temporal evolution of a dynamical system can be identified. We illustrate the algorithms by finding a prediction for the evolution of a harmonic oscillator based on measurements, by detecting an arriving front in an excitable system, and as a real-world application, the prediction of solar power production based on energy production observations at a given site together with the weather forecast.

4.
Philos Trans A Math Phys Eng Sci ; 369(1940): 1513-24, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21382828

RESUMO

We review a strategy for low- and least-order Galerkin models suitable for the design of closed-loop stabilization of wakes. These low-order models are based on a fixed set of dominant coherent structures and tend to be incurably fragile owing to two challenges. Firstly, they miss the important stabilizing effects of interactions with the base flow and stochastic fluctuations. Secondly, their range of validity is restricted by ignoring mode deformations during natural and actuated transients. We address the first challenge by including shift mode(s) and nonlinear turbulence models. The resulting robust least-order model lives on an inertial manifold, which links slow variations in the base flow and coherent and stochastic fluctuation amplitudes. The second challenge, the deformation of coherent structures, is addressed by parameter-dependent modes, allowing smooth transitions between operating conditions. Now, the Galerkin model lives on a refined manifold incorporating mode deformations. Control design is a simple corollary of the distilled model structure. We illustrate the modelling path for actuated wake flows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...