Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 7(3)2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30049942

RESUMO

Cyclic nucleotide-gated channels (CNGCs) have been postulated to contribute significantly in plant development and stress resistance. However, their electrophysiological properties remain poorly understood. Here, we characterized barley CNGC2-3 (HvCNGC2-3) by the two-electrode voltage-clamp technique in the Xenopus laevis oocyte heterologous expression system. Current was not observed in X. laevis oocytes injected with HvCNGC2-3 complementary RNA (cRNA) in a bathing solution containing either Na⁺ or K⁺ solely, even in the presence of 8-bromoadenosine 3',5'-cyclic monophosphate (8Br-cAMP) or 8-bromoguanosine 3',5'-cyclic monophosphate (8Br-cGMP). A weakly voltage-dependent slow hyperpolarization-activated ion current was observed in the co-presence of Na⁺ and K⁺ in the bathing solution and in the presence of 10 µM 8Br-cAMP, but not 8Br-cGMP. Permeability ratios of HvCNGC2-3 to K⁺, Na⁺ and Cl- were determined as 1:0.63:0.03 according to reversal-potential analyses. Amino-acid replacement of the unique ion-selective motif of HvCNGC2-3, AQGL, with the canonical motif, GQGL, resulted in the abolition of the current. This study reports a unique two-ion-dependent activation characteristic of the barley CNGC, HvCNGC2-3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...