Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1195718, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674738

RESUMO

Plant pathogens and pests can cause significant losses in crop yields, affecting food security and the global economy. Many traditional chemical pesticides are used to combat these organisms. This can lead to the development of pesticide-resistant strains of pathogens/insects and negatively impact the environment. The development of new bioprotectants, which are less harmful to the environment and less likely to lead to pesticide-resistance, appears as a sustainable strategy to increase plant immunity. Natural Rhamnolipids (RL-Nat) are a class of biosurfactants with bioprotectant properties that are produced by an opportunistic human pathogen bacterium. RL-Nat can act as plant resistance inducers against a wide variety of pathogens. Recently, a series of bioinspired synthetic mono-RLs produced by green chemistry were also reported as phytoprotectants. Here, we explored their capacity to generate novel colloidal systems that might be used to encapsulate bioactive hydrophobic compounds to enhance their performance as plant bioprotectants. The synthetic mono-RLs showed good surfactant properties and emulsification power providing stable nanoemulsions capable of acting as bio-carriers with good wettability. Synthetic RLs-stabilized nanoemulsions were more effective than RLs suspensions at inducing plant immunity, without causing deleterious effects. These nanoemulsions were innocuous to native substrate microbiota and beneficial soil-borne microbes, making them promising safe bio-carriers for crop protection.

2.
J Basic Microbiol ; 63(6): 646-657, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36737831

RESUMO

Bacterial surface components and extracellular compounds such as exopolysaccharides (EPSs) are crucial for interactions between cells, tolerance to different types of stress, and host colonization. Sinorhizobium meliloti produces two EPSs: Succinoglycan (EPS I), which is involved in the establishment of symbiosis with Medicago sativa, and galactoglucan (EPS II), associated with biofilm formation and the promotion of aggregation. Here, we aimed to assess their role in aggregative interactions between cells of the same strain of a given species (auto-aggregation), and between genetically different strains of the same or different species (intra- or intergeneric coaggregation). To do this, we used S. meliloti mutants which are defective in the production of EPS I, EPS II, or both. Macroscopic and microscopic coaggregation tests were performed with combinations or pairs of different bacterial strains. The EPS II-producing strains were more capable of coaggregation than those that cannot produce EPS II. This was true both for coaggregations between different S. meliloti strains, and between S. meliloti and other common rhizobacteria of agricultural relevance, such as Pseudomonas fluorescens and Azospirillum brasilense. The exogenous addition of EPS II strongly promoted coaggregation, thus confirming the polymer's importance for this phenotype. EPS II may therefore be a key factor in events of physiological significance for environmental survival, such as aggregative interactions and biofilm development. Furthermore, it might be a connecting molecule with relevant properties at an ecological, biotechnological, and agricultural level.


Assuntos
Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Regulação Bacteriana da Expressão Gênica , Biofilmes , Medicago sativa/metabolismo , Medicago sativa/microbiologia , Simbiose/genética , Polissacarídeos Bacterianos , Proteínas de Bactérias/genética
3.
Biochim Biophys Acta Biomembr ; 1864(1): 183781, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555419

RESUMO

Surface-active amphiphiles find applications in a wide range of areas of industry such as agrochemicals, personal care, and pharmaceuticals. In many of these applications, interaction with cell membranes is a key factor for achieving their purpose. How do amphiphiles interact with lipid membranes? What are their bases for membrane specificity? Which biophysical properties of membranes are susceptible to modulation by amphiphilic membrane-effectors? What aspects of this interaction are important for performing their function? In our work on membrane biophysics over the years, questions like these have arisen and we now share some of our findings and discuss them in this review. This topic was approached focusing on the membrane properties and their alterations rather than on the amphiphile structure requirements for their interaction. Here, we do not aim to provide a comprehensive list of the modes of action of amphiphiles of biological interest but to help in understanding them.


Assuntos
Membrana Celular/química , Lipídeos de Membrana/química , Tensoativos/química , Biofísica , Membrana Celular/ultraestrutura
4.
Heliyon ; 7(1): e06056, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33553743

RESUMO

HYPOTHESIS: Amphotericin B (AmB) is a highly effective antimicrobial, with broad antimycotic and antiparasitic effect. However, AmB poor water-solubilisation and aggregation tendency limits its use for topical applications. We studied the capacity of nanostructures formed by alkyl esters of L-ascorbic acid (ASCn) to solubilise AmB and tested the relationship between the prevalence of the monomeric form of AmB and its effectiveness as antimicrobial agent. EXPERIMENTS: We developed self-assembled nanostructures formed by the commercial compound, palmitoyl ascorbic acid, as well as the shorter chained myristoyl and lauroyl ascorbic acid. AmB loaded ASCn nanostructures were studied by a combination of spectroscopic techniques, together with particle analysis, differential scanning calorimetry, microbiological tests, and Langmuir monolayer visualisation. FINDINGS: We found no direct relation between the antimicrobial capacity and the prevalence of the monomeric form of the drug. However, the later was related to chemical stability and colloidal robustness. Nanostructures formed by ASC16 in its anionic state provide an appropriate environment for AmB in its monomeric form, maintaining its antimicrobial capacity. Langmuir film visualisation supports spectrophotometric evidence, indicating that ASC16 allows the in-plane solubilisation of AmB. Coagels formed by ASC16 appear as promising for carrying AmB for dermal delivery.

5.
Colloids Surf B Biointerfaces ; 185: 110621, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31726308

RESUMO

L-ascorbic acid alkyl esters (ASCn) are lipophilic forms of vitamin C, which act as skin permeation enhancers. We investigated the physical changes induced by incorporating ASCn into stratum corneum (SC) lipid membranes and correlated this with the mechanism proposed in the literature for skin permeation enhancement phenomena. We used lipid monolayers to explore the 2D structure and elasticity of the lipid-enhancer systems. As a comparison, the classic permeation enhancer, oleic acid (OA) and the non-enhancer analogue stearic acid (SA) were analysed. The incorporation of ASCn or OA into SC membranes resulted in more liquid-like films, with a dose-dependent lowering of the compressibility modulus. Brewster angle microscopy (BAM) evidenced partial miscibility of the enhancer with SC lipid components, stabilising the liquid-expanded phase. At the nanoscale, AFM showed that SC lipids form heterogeneous membranes, which underwent structural alterations after incorporating ASCn and fatty acids, such as SA and OA. The lower, cholesterol-enriched phase appears to concentrate the enhancers, whilst the higher ceramide-enriched phase concentrated the non-enhancer SA. Our results and previously reported pieces of evidence indicate a strong pattern in which the rheological properties of SC lipid films are determinant for skin permeation phenomena.


Assuntos
Ácido Ascórbico/farmacologia , Ésteres/farmacologia , Membranas Artificiais , Absorção Cutânea/efeitos dos fármacos , Pele/efeitos dos fármacos , Ácido Ascórbico/química , Elasticidade , Ésteres/química , Ácido Oleico/farmacologia , Permeabilidade
6.
Front Microbiol ; 7: 1085, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27486441

RESUMO

Many species or strains of the genus Pseudomonas have been characterized as plant growth promoting rhizobacteria (PGPR). We used a combination of phenotypic and genotypic techniques to analyze the community of fluorescent Pseudomonas strains in the rhizosphere of commercially grown Mentha piperita (peppermint). Biochemical techniques, Amplified rDNA Restriction Analysis (ARDRA), and 16S rRNA gene sequence analysis revealed that the majority of the isolated native fluorescent strains were P. putida. Use of two Repetitive Sequence-based PCR (rep-PCR) techniques, BOX-PCR and ERIC-PCR, allowed us to evaluate diversity among the native strains and to more effectively distinguish among them. PGPR activity was tested for the native strains and reference strain P. fluorescens WCS417r. Micropropagated M. piperita plantlets were exposed to microbial volatile organic compounds (mVOCs) emitted by the bacterial strains, and plant biomass parameters and production of essential oils (EOs) were measured. mVOCs from 11 of the native strains caused an increase in shoot fresh weight. mVOCs from three native strains (SJ04, SJ25, SJ48) induced changes in M. pierita EO composition. The mVOCs caused a reduction of metabolites in the monoterpene pathway, for example menthofuran, and an increase in menthol production. Menthol production is the primary indicator of EO quality. The mVOCs produced by native strains SJ04, SJ25, SJ48, and strain WCS417r were analyzed. The obtained mVOC chromatographic profiles were unique for each of the three native strains analyzed, containing varying hydrocarbon, aromatic, and alogenic compounds. The differential effects of the strains were most likely due to the specific mixtures of mVOCs emitted by each strain, suggesting a synergistic effect occurs among the compounds present.

7.
Materials (Basel) ; 9(6)2016 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28773540

RESUMO

Bacterial surface components and extracellular compounds, particularly flagella, lipopolysaccharides (LPSs), and exopolysaccharides (EPSs), in combination with environmental signals and quorum-sensing signals, play crucial roles in bacterial autoaggregation, biofilm development, survival, and host colonization. The nitrogen-fixing species Sinorhizobium meliloti (S. meliloti) produces two symbiosis-promoting EPSs: succinoglycan (or EPS I) and galactoglucan (or EPS II). Studies of the S.meliloti/alfalfa symbiosis model system have revealed numerous biological functions of EPSs, including host specificity, participation in early stages of host plant infection, signaling molecule during plant development, and (most importantly) protection from environmental stresses. We evaluated functions of EPSs in bacterial resistance to heavy metals and metalloids, which are known to affect various biological processes. Heavy metal resistance, biofilm production, and co-culture were tested in the context of previous studies by our group. A range of mercury (Hg II) and arsenic (As III) concentrations were applied to S. meliloti wild type strain and to mutant strains defective in EPS I and EPS II. The EPS production mutants were generally most sensitive to the metals. Our findings suggest that EPSs are necessary for the protection of bacteria from either Hg (II) or As (III) stress. Previous studies have described a pump in S. meliloti that causes efflux of arsenic from cells to surrounding culture medium, thereby protecting them from this type of chemical stress. The presence of heavy metals or metalloids in culture medium had no apparent effect on formation of biofilm, in contrast to previous reports that biofilm formation helps protect various microorganism species from adverse environmental conditions. In co-culture experiments, EPS-producing heavy metal resistant strains exerted a protective effect on AEPS-non-producing, heavy metal-sensitive strains; a phenomenon termed "rescuing" of the non-resistant strain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...