Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050597

RESUMO

American football is the sport with the highest rates of concussion injuries. Biomedical engineering applications may support athletes in monitoring their injuries, evaluating the effectiveness of their equipment, and leading industrial research in this sport. This literature review aims to report on the applications of biomedical engineering research in American football, highlighting the main trends and gaps. The review followed the PRISMA guidelines and gathered a total of 1629 records from PubMed (n = 368), Web of Science (n = 665), and Scopus (n = 596). The records were analyzed, tabulated, and clustered in topics. In total, 112 studies were selected and divided by topic in the biomechanics of concussion (n = 55), biomechanics of footwear (n = 6), biomechanics of sport-related movements (n = 6), the aerodynamics of football and catch (n = 3), injury prediction (n = 8), heat monitoring of physiological parameters (n = 8), and monitoring of the training load (n = 25). The safety of players has fueled most of the research that has led to innovations in helmet and footwear design, as well as improvements in the understanding and prevention of injuries and heat monitoring. The other important motivator for research is the improvement of performance, which has led to the monitoring of training loads and catches, and studies on the aerodynamics of football. The main gaps found in the literature were regarding the monitoring of internal loads and the innovation of shoulder pads.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Futebol Americano , Futebol , Humanos , Futebol Americano/lesões , Futebol Americano/fisiologia , Concussão Encefálica/prevenção & controle , Atletas , Dispositivos de Proteção da Cabeça , Traumatismos em Atletas/prevenção & controle
2.
Sensors (Basel) ; 22(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35591084

RESUMO

BACKGROUND: Muscular-activity timing is useful information that is extractable from surface EMG signals (sEMG). However, a reference method is not available yet. The aim of this study is to investigate the reliability of a novel machine-learning-based approach (DEMANN) in detecting the onset/offset timing of muscle activation from sEMG signals. METHODS: A dataset of 2880 simulated sEMG signals, stratified for signal-to-noise ratio (SNR) and time support, was generated to train a hidden single-layer fully-connected neural network. DEMANN's performance was evaluated on simulated sEMG signals and two different datasets of real sEMG signals. DEMANN was validated against different reference algorithms, including the acknowledged double-threshold statistical algorithm (DT). RESULTS: DEMANN provided a reliable prediction of muscle onset/offset in simulated and real sEMG signals, being minimally affected by SNR variability. When directly compared with state-of-the-art algorithms, DEMANN introduced relevant improvements in prediction performances. CONCLUSIONS: These outcomes support DEMANN's reliability in assessing onset/offset events in different motor tasks and the condition of signal quality (different SNR), improving reference-algorithm performances. Unlike other works, DEMANN's adopts a machine learning approach where a neural network is trained by only simulated sEMG signals, avoiding the possible complications and costs associated with a typical experimental procedure, making this approach suitable to clinical practice.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Algoritmos , Eletromiografia/métodos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...