Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 106(7): 4711-4724, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37173254

RESUMO

Livestock production systems with ruminants play a relevant role in the emission of the greenhouse gas CH4, which is known to significantly contribute to global warming. Consequently, it is a major societal concern to develop strategies in mitigating such emissions. In addition to breeding toward low-emitting cows, management strategies could also help in reducing greenhouse gas emissions from dairy farms. However, information is required for appropriate decision making. To the best of our knowledge, this is the first study that considers different, already available equations to estimate CH4 emissions of small-scale dairy farms in the mountain region, which largely differ from large dairy farms in the lowlands concerning management and production. For this study, 2 different production systems, both typical for small-scale dairy farming in mountain regions, were simultaneously run over 3 yr at an experimental farm as follows: (1) a high-input production system, characterized by intensive feeding with high amounts of external concentrates and maize silage, year-round housing, and high yielding Simmental cattle breed, and (2) a low-input production system, characterized by prevailing hay and pasture feeding and silage ban, thus covering most of the energy requirements by forage harvested on-farm and the use of the local Tyrolean Grey cattle breed. Results reveal that feeding management has a significant effect on the amount of CH4 emissions. The low-input production system produced less CH4 per cow and per day compared with the high-input production system. However, if calculated per kilogram of milk, the high-input scenario produced proportionally less CH4 than the low-input one. Findings of this study highlight the potential to assess in a fast and cost-effective way the CH4 emission in different dairy production systems. This information contributes to the debate about the future of sustainable milk production in mountain regions, where the production of feed resources is climatically constrained, and could be useful for breeding purposes toward lower CH4-emissions.


Assuntos
Gases de Efeito Estufa , Leite , Feminino , Bovinos , Animais , Metano , Melhoramento Vegetal , Ruminantes , Dieta/veterinária , Lactação
2.
AoB Plants ; 15(2): plad001, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36959914

RESUMO

Leaves grown at different light intensities exhibit considerable differences in physiology, morphology and anatomy. Because plant leaves develop over three dimensions, analyses of the leaf structure should account for differences in lengths, surfaces, as well as volumes. In this manuscript, we set out to disentangle the mesophyll surface area available for diffusion per leaf area (S m,LA) into underlying one-, two- and three-dimensional components. This allowed us to estimate the contribution of each component to S m,LA, a whole-leaf trait known to link structure and function. We introduce the novel concept of a 'stomatal vaporshed,' i.e. the intercellular airspace unit most closely connected to a single stoma, and use it to describe the stomata-to-diffusive-surface pathway. To illustrate our new theoretical framework, we grew two cultivars of Vitis vinifera L. under high and low light, imaged 3D leaf anatomy using microcomputed tomography (microCT) and measured leaf gas exchange. Leaves grown under high light were less porous and thicker. Our analysis showed that these two traits and the lower S m per mesophyll cell volume (S m,Vcl) in sun leaves could almost completely explain the difference in S m,LA. Further, the studied cultivars exhibited different responses in carbon assimilation per photosynthesizing cell volume (A Vcl). While Cabernet Sauvignon maintained A Vcl constant between sun and shade leaves, it was lower in Blaufränkisch sun leaves. This difference may be related to genotype-specific strategies in building the stomata-to-diffusive-surface pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...