Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Morphol ; 278(4): 450-463, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28182295

RESUMO

Polypterus senegalus Cuvier, 1829 is one of the most basal living actinopterygian fish and a member of the Actinopterygii. We analyzed the spatial and temporal pattern of cranial muscle development of P. senegalus using whole-mount immunostaining and serial sectioning. We described the detailed structure of the external gill muscles which divided into dorsal and ventral parts after yolk exhaustion. The pattern of the division is similar to that of urodeles. We suggest that, the external gill muscles of P. senegalus are involved in spreading and folding of the external gill stem and the branches. The fibers of the external gill muscles appear postero-lateral to the auditory capsule. In addition, the facial nerve passes through the external gills. Therefore, the external gill muscles are probably derived from the m. constrictor hyoideus dorsalis. In contrast to previous studies, we described the mm. interhyoideus and hyohyoideus fibers as independent components in the yolk-sac larvae. The m. hyohyoideus fibers appear lateral to the edge of the ventral portion of the external gill muscles, which are probably derived from the m. constrictor hyoideus dorsalis. These findings suggest that the m. hyohyoidues is derived from the m. constrictor hyoideus dorsalis in P. senegalus. In other actinopterygians, the m. hyohyoideus is derived from the m. constrictor hyoideus ventralis; therefore, the homology of the m. hyohyoidues of P. senegalus and other actinopterygians remains unclear. J. Morphol. 278:450-463, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Peixes/embriologia , Músculos/embriologia , Crânio/embriologia , Animais , Brânquias/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Músculos/anatomia & histologia , Senegal
2.
Sci Rep ; 6: 30580, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27466206

RESUMO

The lung is an important organ for air breathing in tetrapods and originated well before the terrestrialization of vertebrates. Therefore, to better understand lung evolution, we investigated lung development in the extant basal actinopterygian fish Senegal bichir (Polypterus senegalus). First, we histologically confirmed that lung development in this species is very similar to that of tetrapods. We also found that the mesenchymal expression patterns of three genes that are known to play important roles in early lung development in tetrapods (Fgf10, Tbx4, and Tbx5) were quite similar to those of tetrapods. Moreover, we found a Tbx4 core lung mesenchyme-specific enhancer (C-LME) in the genomes of bichir and coelacanth (Latimeria chalumnae) and experimentally confirmed that these were functional in tetrapods. These findings provide the first molecular evidence that the developmental program for lung was already established in the common ancestor of actinopterygians and sarcopterygians.


Assuntos
Proteínas de Peixes/genética , Peixes/crescimento & desenvolvimento , Pulmão/crescimento & desenvolvimento , Animais , Evolução Biológica , Embrião de Galinha , Galinhas/genética , Embrião não Mamífero , Elementos Facilitadores Genéticos , Feminino , Peixes/embriologia , Peixes/genética , Peixes/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Larva , Pulmão/fisiologia , Masculino , Mesoderma
3.
Zoolog Sci ; 30(1): 1-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23317359

RESUMO

The current model for branching morphogenesis of mouse lung proposes that the epithelium bifurcates as cells pursue separate sources of fibroblast growth factor (FGF) 10, secreted from mesenchymal tissue through interactions with epithelial tissue. If so, it may be assumed that the lung epithelium will grow into a uniform, expanding ball (without branching) when uniformly exposed to a constant concentration of FGF10. To test this hypothesis, we cultured Matrigel-embedded lung epithelium explants in FGF10-supplemented medium while shaking the culture dishes. Shaking cultures with FGF10 resulted in inferior epithelial branching compared to control cultures at rest. However, this effect was unexpectedly accompanied by poor growth rather than by ball-like expansion. When using FGF1, epithelial cultures grew and branched similarly well under either culture condition. Thus, we hypothesized that FGF10 signaling must be mediated by autocrine FGFs, such as FGF1, which might easily diffuse through the culture medium in the shaking culture. Reverse transcription-polymerase chain reaction analyses showed that FGF9 as well as FGF1 were expressed in the epithelium in vivo and in FGF10-stimulated epithelium in vitro, and FGF9 induced epithelial branching at a much lower concentration than FGF10. These results suggest that FGF1 and FGF9 may mediate FGF10 signaling and induce branching in the lung epithelium via autocrine signaling.


Assuntos
Fatores de Crescimento de Fibroblastos/farmacologia , Pulmão/embriologia , Morfogênese/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/embriologia , Animais , Meios de Cultura , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais , Camundongos , Camundongos Knockout , Técnicas de Cultura de Tecidos
4.
Development ; 138(9): 1771-82, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21447557

RESUMO

In general, cell proliferation and differentiation show an inverse relationship, and are regulated in a coordinated manner during development. Embryonic cardiomyocytes must support embryonic life by functional differentiation such as beating, and proliferate actively to increase the size of the heart. Therefore, progression of both proliferation and differentiation is indispensable. It remains unknown whether proliferation and differentiation are related in these embryonic cardiomyocytes. We focused on abnormal phenotypes, such as hyperproliferation, inhibition of differentiation and enhanced expression of cyclin D1 in cardiomyocytes of mice with mutant jumonji (Jmj, Jarid2), which encodes the repressor of cyclin D1. Analysis of Jmj/cyclin D1 double mutant mice showed that Jmj was required for normal differentiation and normal expression of GATA4 protein through cyclin D1. Analysis of transgenic mice revealed that enhanced expression of cyclin D1 decreased GATA4 protein expression and inhibited the differentiation of cardiomyocytes in a CDK4/6-dependent manner, and that exogenous expression of GATA4 rescued the abnormal differentiation. Finally, CDK4 phosphorylated GATA4 directly, which promoted the degradation of GATA4 in cultured cells. These results suggest that CDK4 activated by cyclin D1 inhibits differentiation of cardiomyocytes by degradation of GATA4, and that initiation of Jmj expression unleashes the inhibition by repression of cyclin D1 expression and allows progression of differentiation, as well as repression of proliferation. Thus, a Jmj-cyclin D1 pathway coordinately regulates proliferation and differentiation of cardiomyocytes.


Assuntos
Diferenciação Celular/genética , Proliferação de Células , Ciclina D1/fisiologia , Coração/embriologia , Miócitos Cardíacos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Animais , Ciclina D1/genética , Embrião de Mamíferos , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HeLa , Coração/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/genética , Complexo Repressor Polycomb 2 , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...