Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(22): 15000-15009, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38787801

RESUMO

We present pulsed electron paramagnetic resonance (EPR) studies on three La(II) complexes, [K(2.2.2-cryptand)][La(Cp')3] (1), [K(2.2.2-cryptand)][La(Cp″)3] (2), and [K(2.2.2-cryptand)][La(Cptt)3] (3), which feature cyclopentadienyl derivatives as ligands [Cp' = C5H4SiMe3; Cp″ = C5H3(SiMe3)2; Cptt = C5H3(CMe3)2] and display a C3 symmetry. Long spin-lattice relaxation (T1) and phase memory (Tm) times are observed for all three compounds, but with significant variation in T1 among 1-3, with 3 being the slowest relaxing due to higher s-character of the SOMO. The dephasing times can be extended by more than an order of magnitude via dynamical decoupling experiments using a Carr-Purcell-Meiboom-Gill (CPMG) sequence, reaching 161 µs (5 K) for 3. Coherent spin manipulation is performed by the observation of Rabi quantum oscillations up to 80 K in this nuclear spin-rich environment (1H, 13C, and 29Si). The high nuclear spin of 139La (I = 7/2), and the ability to coherently manipulate all eight hyperfine transitions, makes these molecules promising candidates for application as qudits (multilevel quantum systems featuring d quantum states; d >2) for performing quantum operations within a single molecule. Application of HYSCORE techniques allows us to quantify the electron spin density at ligand nuclei and interrogate the role of functional groups to the electron spin relaxation properties.

2.
Chem Sci ; 15(8): 3003-3010, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38404384

RESUMO

We examine lanthanide (Ln)-ligand bonding in a family of early Ln3+ complexes [Ln(Cptt)3] (1-Ln, Ln = La, Ce, Nd, Sm; Cptt = C5H3tBu2-1,3) by pulsed electron paramagnetic resonance (EPR) methods, and provide the first characterization of 1-La and 1-Nd by single crystal XRD, multinuclear NMR, IR and UV/Vis/NIR spectroscopy. We measure electron spin T1 and Tm relaxation times of 12 and 0.2 µs (1-Nd), 89 and 1 µs (1-Ce) and 150 and 1.7 µs (1-Sm), respectively, at 5 K: the T1 relaxation of 1-Nd is more than 102 times faster than its valence isoelectronic uranium analogue. 13C and 1H hyperfine sublevel correlation (HYSCORE) spectroscopy reveals that the extent of covalency is negligible in these Ln compounds, with much smaller hyperfine interactions than observed for equivalent actinide (Th and U) complexes. This is corroborated by ab initio calculations, confirming the predominant electrostatic nature of the metal-ligand bonding in these complexes.

3.
J Am Chem Soc ; 143(26): 9813-9824, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34169713

RESUMO

We report the use of 29Si NMR spectroscopy and DFT calculations combined to benchmark the covalency in the chemical bonding of s- and f-block metal-silicon bonds. The complexes [M(SitBu3)2(THF)2(THF)x] (1-M: M = Mg, Ca, Yb, x = 0; M = Sm, Eu, x = 1) and [M(SitBu2Me)2(THF)2(THF)x] (2-M: M = Mg, x = 0; M = Ca, Sm, Eu, Yb, x = 1) have been synthesized and characterized. DFT calculations and 29Si NMR spectroscopic analyses of 1-M and 2-M (M = Mg, Ca, Yb, No, the last in silico due to experimental unavailability) together with known {Si(SiMe3)3}--, {Si(SiMe2H)3}--, and {SiPh3}--substituted analogues provide 20 representative examples spanning five silanide ligands and four divalent metals, revealing that the metal-bound 29Si NMR isotropic chemical shifts, δSi, span a wide (∼225 ppm) range when the metal is kept constant, and direct, linear correlations are found between δSi and computed delocalization indices and quantum chemical topology interatomic exchange-correlation energies that are measures of bond covalency. The calculations reveal dominant s- and d-orbital character in the bonding of these silanide complexes, with no significant f-orbital contributions. The δSi is determined, relatively, by paramagnetic shielding for a given metal when the silanide is varied but by the spin-orbit shielding term when the metal is varied for a given ligand. The calculations suggest a covalency ordering of No(II) > Yb(II) > Ca(II) ≈ Mg(II), challenging the traditional view of late actinide chemical bonding being equivalent to that of the late lanthanides.

4.
Dalton Trans ; 49(19): 6504-6511, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32367094

RESUMO

Organometallic lanthanide (Ln) chemistry is dominated by complexes that contain substituted cyclopentadienyl (CpR) ligands. Closely related phospholyls have received less attention, and although they have proven utility in stabilising low oxidation state Ln complexes the trivalent Ln chemistry of these ligands is limited in comparison. Herein, we synthesise two families of heteroleptic Ln3+ complexes, [Ln(Htp)2(µ-BH4)]2 (Htp = 2,5-di-tert-butylphospholyl; 1-Ln; Ln = La, Ce, Nd, Sm), and [[Ln(Htp)2(µ-BH4)2K(S)]n (2-Ln, Ln = La, Ce, S = 2 DME, n = 2; 3-Ce, Ln = Ce, S = Et2O and THF, n = ∞) via the reactions of parent [Ln(BH4)3(THF)3.5] with K(Htp), to investigate differences between Ln complexes with substituted phospholyl ligands and analogous CpR complexes. Complexes 1-3-Ln were characterised as appropriate by single crystal XRD, SQUID magnetometry, elemental analysis, multinuclear NMR, ATR-IR and UV-Vis-NIR spectroscopy. Ab initio calculations reveal that small changes in the Ln3+ coordination spheres of these complexes can have relatively large influences on crystal field splitting.

5.
Nat Commun ; 10(1): 3330, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350411

RESUMO

The proposal that paramagnetic transition metal complexes could be used as qubits for quantum information processing (QIP) requires that the molecules retain the spin information for a sufficient length of time to allow computation and error correction. Therefore, understanding how the electron spin-lattice relaxation time (T1) and phase memory time (Tm) relate to structure is important. Previous studies have focused on the ligand shell surrounding the paramagnetic centre, seeking to increase rigidity or remove elements with nuclear spins or both. Here we have studied a family of early 3d or 4f metals in the +2 oxidation states where the ground state is effectively a 2S state. This leads to a highly isotropic spin and hence makes the putative qubit insensitive to its environment. We have studied how this influences T1 and Tm and show unusually long relaxation times given that the ligand shell is rich in nuclear spins and non-rigid.

6.
Chemistry ; 23(10): 2290-2293, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28009936

RESUMO

The redox chemistry of uranium is burgeoning and uranium(III) complexes have been shown to promote many interesting synthetic transformations. However, their utility is limited by their reduction potentials, which are smaller than many non-traditional lanthanide(II) complexes. Thorium(III) has a greater redox potential so it should present unprecedented opportunities for actinide reactivity but as with uranium(II) and thorium(II) chemistry, these have not yet been fully realized. Herein we present reactivity studies of two equivalents of [Th(Cp'')3 ] (1, Cp''={C5 H3 (SiMe3 )2 -1,3}) with 4,4'-bipyridine or two equivalents of pyridine to give [{Th(Cp'')3 }2 {µ-(NC5 H4 )2 }] (2) and [{Th(Cp'')3 }2 {µ-(NC5 H5 )2 }] (3), respectively. As relatively large reduction potentials are required to effect these transformations we have shown that thorium(III) can promote reactions that uranium(III) cannot, opening up promising new reductive chemistry for the actinides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...