Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 425, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732522

RESUMO

The Southern Ocean contributes substantially to the global biological carbon pump (BCP). Salps in the Southern Ocean, in particular Salpa thompsoni, are important grazers that produce large, fast-sinking fecal pellets. Here, we quantify the salp bloom impacts on microbial dynamics and the BCP, by contrasting locations differing in salp bloom presence/absence. Salp blooms coincide with phytoplankton dominated by diatoms or prymnesiophytes, depending on water mass characteristics. Their grazing is comparable to microzooplankton during their early bloom, resulting in a decrease of ~1/3 of primary production, and negative phytoplankton rates of change are associated with all salp locations. Particle export in salp waters is always higher, ranging 2- to 8- fold (average 5-fold), compared to non-salp locations, exporting up to 46% of primary production out of the euphotic zone. BCP efficiency increases from 5 to 28% in salp areas, which is among the highest recorded in the global ocean.


Assuntos
Diatomáceas , Haptófitas , Carbono , Fitoplâncton , Oceanos e Mares , Água do Mar
2.
Sci Adv ; 4(3): eaar3748, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29546245

RESUMO

Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean-the ultimate sink-and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude (Mw) 7.8 November 2016 Kaikoura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful "canyon flushing" event and turbidity current that traveled >680 km along one of the world's longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year-1, substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean.

3.
Proc Natl Acad Sci U S A ; 112(1): E15-20, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25535372

RESUMO

The supply and bioavailability of dissolved iron sets the magnitude of surface productivity for ∼ 40% of the global ocean. The redox state, organic complexation, and phase (dissolved versus particulate) of iron are key determinants of iron bioavailability in the marine realm, although the mechanisms facilitating exchange between iron species (inorganic and organic) and phases are poorly constrained. Here we use the isotope fingerprint of dissolved and particulate iron to reveal distinct isotopic signatures for biological uptake of iron during a GEOTRACES process study focused on a temperate spring phytoplankton bloom in subtropical waters. At the onset of the bloom, dissolved iron within the mixed layer was isotopically light relative to particulate iron. The isotopically light dissolved iron pool likely results from the reduction of particulate iron via photochemical and (to a lesser extent) biologically mediated reduction processes. As the bloom develops, dissolved iron within the surface mixed layer becomes isotopically heavy, reflecting the dominance of biological processing of iron as it is removed from solution, while scavenging appears to play a minor role. As stable isotopes have shown for major elements like nitrogen, iron isotopes offer a new window into our understanding of the biogeochemical cycling of iron, thereby allowing us to disentangle a suite of concurrent biotic and abiotic transformations of this key biolimiting element.


Assuntos
Ecossistema , Ferro/análise , Marcação por Isótopo , Fitoplâncton/crescimento & desenvolvimento , Clima Tropical , Fracionamento Químico , Precipitação Química , Clorofila/análise , Isótopos de Ferro , Material Particulado/análise , Comunicações Via Satélite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...