Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(3): e1010642, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930595

RESUMO

Bicaudal D2 (BICD2) is responsible for recruiting cytoplasmic dynein to diverse forms of subcellular cargo for their intracellular transport. Mutations in the human BICD2 gene have been found to cause an autosomal dominant form of spinal muscular atrophy (SMA-LED2), and brain developmental defects. Whether and how the latter mutations are related to roles we and others have identified for BICD2 in brain development remains little understood. BICD2 interacts with the nucleoporin RanBP2 to recruit dynein to the nuclear envelope (NE) of Radial Glial Progenitor cells (RGPs) to mediate their well-known but mysterious cell-cycle-regulated interkinetic nuclear migration (INM) behavior, and their subsequent differentiation to form cortical neurons. We more recently found that BICD2 also mediates NE dynein recruitment in migrating post-mitotic neurons, though via a different interactor, Nesprin-2. Here, we report that Nesprin-2 and RanBP2 compete for BICD2-binding in vitro. To test the physiological implications of this behavior, we examined the effects of known BICD2 mutations using in vitro biochemical and in vivo electroporation-mediated brain developmental assays. We find a clear relationship between the ability of BICD2 to bind RanBP2 vs. Nesprin-2 in controlling of nuclear migration and neuronal migration behavior. We propose that mutually exclusive RanBP2-BICD2 vs. Nesprin-2-BICD2 interactions at the NE play successive, critical roles in INM behavior in RGPs and in post-mitotic neuronal migration and errors in these processes contribute to specific human brain malformations.


Assuntos
Dineínas , Proteínas dos Microfilamentos , Chaperonas Moleculares , Proteínas do Tecido Nervoso , Complexo de Proteínas Formadoras de Poros Nucleares , Criança , Humanos , Encéfalo/metabolismo , Deficiências do Desenvolvimento , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
2.
Biochemistry ; 58(50): 5085-5097, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31756096

RESUMO

Nup358 is a protein subunit of the nuclear pore complex that recruits the opposing microtubule motors kinesin-1 and dynein [via the dynein adaptor Bicaudal D2 (BicD2)] to the nuclear envelope. This pathway is important for positioning of the nucleus during the early steps of mitotic spindle assembly and also essential for an important process in brain development. It is unknown whether dynein and kinesin-1 interact with Nup358 simultaneously or whether they compete. Here, we have reconstituted and characterized a minimal complex of kinesin-1 light chain 2 (KLC2) and Nup358. The proteins interact through a W-acidic motif in Nup358, which is highly conserved among vertebrates but absent in insects. While Nup358 and KLC2 form predominantly monomers, their interaction results in the formation of 2:2 complexes, and the W-acidic motif is required for the oligomerization. In active motor complexes, BicD2 and KLC2 each form dimers. Notably, we show that the dynein adaptor BicD2 and KLC2 interact simultaneously with Nup358, resulting in the formation of 2:2:2 complexes. Mutation of the W-acidic motif results in the formation of 1:1:1 complexes. On the basis of our data, we propose that Nup358 recruits simultaneously one kinesin-1 motor and one dynein motor via BicD2 to the nucleus. We hypothesize that the binding sites are close enough to promote direct interactions between these motor recognition domains, which may be important for the regulation of the motility of these opposing motors. Our data provide important insights into a nuclear positioning pathway that is crucial for brain development and faithful chromosome segregation.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Humanos , Chaperonas Moleculares/química , Complexo de Proteínas Formadoras de Poros Nucleares/química , Ligação Proteica
3.
J Phys Chem Lett ; 10(15): 4362-4367, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31306018

RESUMO

Dynein adaptors such as Bicaudal D2 (BicD2) recognize cargo for dynein-dependent transport, and cargo-bound adaptors are required to activate dynein for processive transport, but the mechanism of action is unknown. Here we report the X-ray structure of the cargo-binding domain of human BicD2 and investigate the structural dynamics of the coiled-coil. Our molecular dynamics simulations support the fact that BicD2 can switch from a homotypic coiled-coil registry, in which both helices of the homodimer are aligned, to an asymmetric registry, where a portion of one helix is vertically shifted, as both states are similarly stable and defined by distinct conformations of F743. The F743I variant increases dynein recruitment in the Drosophila homologue, whereas the human R747C variant causes spinal muscular atrophy. We report spontaneous registry shifts for both variants, which may be the cause for BicD2 hyperactivation and disease. We propose that a registry shift upon cargo binding may activate autoinhibited BicD2 for dynein recruitment.


Assuntos
Dineínas/química , Proteínas Associadas aos Microtúbulos/química , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Humanos , Simulação de Dinâmica Molecular , Atrofia Muscular Espinal/genética , Mutação , Fenilalanina/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos
4.
Biochemistry ; 57(46): 6538-6550, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30345745

RESUMO

Dynein adaptor proteins such as Bicaudal D2 (BicD2) are integral components of the dynein transport machinery, as they recognize cargoes for cell cycle-specific transport and link them to the motor complex. Human BicD2 switches from selecting secretory and Golgi-derived vesicles for transport in G1 and S phase (by recognizing Rab6GTP), to selecting the nucleus for transport in G2 phase (by recognizing nuclear pore protein Nup358), but the molecular mechanisms governing this switch are elusive. Here, we have developed a quantitative model for BicD2/cargo interactions that integrates affinities, oligomeric states, and cellular concentrations of the reactants. BicD2 and cargo form predominantly 2:2 complexes. Furthermore, the affinity of BicD2 toward its cargo Nup358 is higher than that toward Rab6GTP. Based on our calculations, an estimated 1000 BicD2 molecules per cell would be recruited to the nucleus through Nup358 in the absence of regulation. Notably, RanGTP is a negative regulator of the Nup358/BicD2 interaction that weakens the affinity by a factor of 10 and may play a role in averting dynein recruitment to the nucleus outside of the G2 phase. However, our quantitative model predicts that an additional negative regulator remains to be identified. In the absence of negative regulation, the affinity of Nup358 would likely be sufficient to recruit BicD2 to the nucleus in G2 phase. Our quantitative model makes testable predictions of how cellular transport events are orchestrated. These transport processes are important for brain development, cell cycle control, signaling, and neurotransmission at synapses.


Assuntos
Núcleo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Transporte Biológico , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/química , Modelos Moleculares , Chaperonas Moleculares/química , Complexo de Proteínas Formadoras de Poros Nucleares/química , Proteínas rab de Ligação ao GTP/química
5.
J Vis Exp ; (135)2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29782014

RESUMO

Cyclin-dependent kinase 1 (Cdk1) is a master controller for the cell cycle in all eukaryotes and phosphorylates an estimated 8 - 13% of the proteome; however, the number of identified targets for Cdk1, particularly in human cells is still low. The identification of Cdk1-specific phosphorylation sites is important, as they provide mechanistic insights into how Cdk1 controls the cell cycle. Cell cycle regulation is critical for faithful chromosome segregation, and defects in this complicated process lead to chromosomal aberrations and cancer. Here, we describe an in vitro kinase assay that is used to identify Cdk1-specific phosphorylation sites. In this assay, a purified protein is phosphorylated in vitro by commercially available human Cdk1/cyclin B. Successful phosphorylation is confirmed by SDS-PAGE, and phosphorylation sites are subsequently identified by mass spectrometry. We also describe purification protocols that yield highly pure and homogeneous protein preparations suitable for the kinase assay, and a binding assay for the functional verification of the identified phosphorylation sites, which probes the interaction between a classical nuclear localization signal (cNLS) and its nuclear transport receptor karyopherin α. To aid with experimental design, we review approaches for the prediction of Cdk1-specific phosphorylation sites from protein sequences. Together these protocols present a very powerful approach that yields Cdk1-specific phosphorylation sites and enables mechanistic studies into how Cdk1 controls the cell cycle. Since this method relies on purified proteins, it can be applied to any model organism and yields reliable results, especially when combined with cell functional studies.


Assuntos
Proteína Quinase CDC2/metabolismo , Espectrometria de Massas/métodos , Fosforilação/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...