Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 377(1846): 20210004, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35067088

RESUMO

Understanding how environmental factors affect the thermal tolerance of species is crucial for predicting the impact of thermal stress on species abundance and distribution. To date, species' responses to thermal stress are typically assessed on laboratory-reared individuals and using coarse, low-resolution, climate data that may not reflect microhabitat dynamics at a relevant scale. Here, we examine the daily temporal variation in heat tolerance in a range of species in their natural environments across temperate and tropical Australia. Individuals were collected in their habitats throughout the day and tested for heat tolerance immediately thereafter, while local microclimates were recorded at the collection sites. We found high levels of plasticity in heat tolerance across all the tested species. Both short- and long-term variability of temperature and humidity affected plastic adjustments of heat tolerance within and across days, but with species differences. Our results reveal that plastic changes in heat tolerance occur rapidly at a daily scale and that environmental factors on a relatively short timescale are important drivers of the observed variation in thermal tolerance. Ignoring such fine-scale physiological processes in distribution models might obscure conclusions about species' range shifts with global climate change. This article is part of the theme issue 'Species' ranges in the face of changing environments (part 1)'.


Assuntos
Evolução Biológica , Mudança Climática , Ecossistema , Humanos , Microclima , Plásticos , Temperatura
2.
J Exp Biol ; 224(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34424971

RESUMO

Terrestrial arthropods in the Arctic and Antarctic are exposed to extreme and variable temperatures, and climate change is predicted to be especially pronounced in these regions. Available ecophysiological studies on terrestrial ectotherms from the Arctic and Antarctic typically focus on the ability of species to tolerate the extreme low temperatures that can occur in these regions, whereas studies investigating species plasticity and the importance of evolutionary adaptation to periodically high and increasing temperatures are limited. Here, we provide an overview of current knowledge on thermal adaptation to high temperatures of terrestrial arthropods in Arctic and Antarctic regions. Firstly, we summarize the literature on heat tolerance for terrestrial arthropods in these regions, and discuss variation in heat tolerance across species, habitats and polar regions. Secondly, we discuss the potential for species to cope with increasing and more variable temperatures through thermal plasticity and evolutionary adaptation. Thirdly, we summarize our current knowledge of the underlying physiological adjustments to heat stress in arthropods from polar regions. It is clear that very little data are available on the heat tolerance of arthropods in polar regions, but that large variation in arthropod thermal tolerance exists across polar regions, habitats and species. Further, the species investigated show unique physiological adjustments to heat stress, such as their ability to respond quickly to increasing or extreme temperatures. To understand the consequences of climate change on terrestrial arthropods in polar regions, we suggest that more studies on the ability of species to cope with stressful high and variable temperatures are needed.


Assuntos
Artrópodes , Aclimatação , Animais , Regiões Árticas , Mudança Climática , Temperatura
3.
J Exp Biol ; 224(Pt 7)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824188

RESUMO

Terrestrial arthropods in the Arctic and Antarctic are exposed to extreme and variable temperatures, and climate change is predicted to be especially pronounced in these regions. Available ecophysiological studies on terrestrial ectotherms from the Arctic and Antarctic typically focus on the ability of species to tolerate the extreme low temperatures that can occur in these regions, whereas studies investigating species plasticity and the importance of evolutionary adaptation to periodically high and increasing temperatures are limited. Here, we provide an overview of current knowledge on thermal adaptation to high temperatures of terrestrial arthropods in Arctic and Antarctic regions. Firstly, we summarize the literature on heat tolerance for terrestrial arthropods in these regions, and discuss variation in heat tolerance across species, habitats and polar regions. Secondly, we discuss the potential for species to cope with increasing and more variable temperatures through thermal plasticity and evolutionary adaptation. Thirdly, we summarize our current knowledge of the underlying physiological adjustments to heat stress in arthropods from polar regions. It is clear that very little data are available on the heat tolerance of arthropods in polar regions, but that large variation in arthropod thermal tolerance exists across polar regions, habitats and species. Further, the species investigated show unique physiological adjustments to heat stress, such as their ability to respond quickly to increasing or extreme temperatures. To understand the consequences of climate change on terrestrial arthropods in polar regions, we suggest that more studies on the ability of species to cope with stressful high and variable temperatures are needed.


Assuntos
Artrópodes , Aclimatação , Animais , Regiões Antárticas , Regiões Árticas , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...