Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202402120, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695846

RESUMO

Supercritical water provides distinctly different solvation properties compared to what is known from liquid water. Despite its prevalence deep in the Earth's crust and its role in chemosynthetic ecosystems in the vicinity of hydrothermal vents, molecular insights into its solvation mechanisms are still very scarce compared to what is known for liquid water. Recently, neutral metal particles have been detected in hydrothermal fluids and proposed to explain the transport of gold species to ore deposits on Earth. Using ab initio molecular dynamics, we elucidate the solvation properties of small gold species at supercritical conditions. The neutral metal clusters themselves contribute enormous THz intensity not because of their intramolecular vibrations, but due to their pronounced electronic polarization coupling to the dynamical supercritical solvent, leading to a continuum absorption up to about 1000 cm-1. On top, long-lived interactions between the gold clusters and solvation water leads at these supercritical conditions to a sharp THz resonance that happens to be close to the one due to H-bonding in liquid water at ambient conditions. The resulting distinct resonances can be used to analyse the solvation properties of neutral metal particles in supercritical aqueous solutions.

2.
J Phys Chem Lett ; 14(35): 7940-7945, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37646493

RESUMO

While catalytic reactions of biomolecular processes play an indispensable role in life, extracting the underlying molecular picture often remains challenging. Based on ab initio simulations of the self-cleavage reaction of hairpin ribozyme, mode-decomposed infrared spectra, and cosine similarity analysis to correlate the product with reactant IR spectra, we demonstrate a strategy to extract molecular details from characteristic spectral changes. Our results are in almost quantitative agreement with the experimental IR band library of nucleic acids and suggest that the spectral range of 800-1200 cm-1 is particularly valuable to monitor self-cleavage. Importantly, the cosine similarities also disclose that IR peaks subject to slight shifts due to self-cleavage might be unrelated, while strongly shifting resonances can correspond to the same structural dynamics. This framework of correlating complex IR spectra at the molecular level along biocatalytic reaction pathways is broadly applicable.


Assuntos
RNA Catalítico , Biocatálise , Catálise , Espectrofotometria Infravermelho
3.
Biophys Chem ; 254: 106260, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31522071

RESUMO

Molecular simulations based on classical force fields are a powerful method for shedding light on the complex behavior of biomolecules in solution. When cosolutes are present in addition to water and biomolecules, subtle balances of weak intermolecular forces have to be accounted for. This imposes high demands on the quality of the underlying force fields, and therefore force field development for small cosolutes is still an active field. Here, we present the development of a new urea force field from studies of urea solutions at ambient and elevated hydrostatic pressures based on a combination of experimental and theoretical approaches. Experimental densities and solvation shell properties from ab initio molecular dynamics simulations at ambient conditions served as the target properties for the force field optimization. Since urea is present in many marine life forms, elevated hydrostatic pressure was rigorously addressed: densities at high pressure were measured by vibrating tube densitometry up to 500 bar and by X-ray absorption up to 5 kbar. Densities were determined by the perturbed-chain statistical associating fluid theory equation of state. Solvation properties were determined by embedded cluster integral equation theory and ab initio molecular dynamics. Our new force field is able to capture the properties of urea solutions at high pressures without further high-pressure adaption, unlike trimethylamine-N-oxide, for which a high-pressure adaption is necessary.


Assuntos
Simulação de Dinâmica Molecular , Ureia/química , Pressão , Soluções/química , Termodinâmica , Água/química
4.
Phys Chem Chem Phys ; 21(2): 859-867, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30556562

RESUMO

The catalytic power of enzymes is usually ascribed to a few catalytically competent residues as revealed by site-directed mutagenesis studies in conjunction with biochemical, thermodynamic and structural analyses. Surprisingly, the mutations of such pivotal residues in a GTPase that can hydrolyse GTP even to GMP, namely hGBP1, have been reported to result only in marginal changes of the catalytic rate compared to the wild type. Our large-scale ab initio quantum-mechanical/molecular-mechanical (QM/MM) metadynamics simulations disclose that the replacement of catalytically competent residues by the inert amino acid alanine, S73A and E99A, opens a plethora of molecularly different reaction pathways featuring very similar energy barriers and thus rates. These hitherto unknown reaction channels are established by mechanistically involving far-distant residues using "floating" water molecules, which connect them via hydrogen-bonding bridges to the nucleophilic water molecule, thus allowing for efficient long-distance proton transfer via the Grotthuss mechanism. Given the generic nature of the disclosed detour mechanisms that provide the molecular underpinning of catalytic versatility and thus mutational robustness of hGBP1, it is expected that the same concept is operational for GTPases in a broad sense.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Mutação , Catálise , Termodinâmica
5.
J Org Chem ; 82(22): 11669-11681, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28800234

RESUMO

The indirect ("ex-cell") electrochemical synthesis of benzoxazoles from imines using a redox mediator based on the iodine(I)/iodine(III) redox couple is reported. Tethering the redox-active iodophenyl subunit to a tetra-alkylammonium moiety allowed for anodic oxidation to be performed without supporting electrolyte. The mediator salt can be easily recovered and reused. Our "ex-cell" approach toward the electrosynthesis of benzoxazoles is compatible with a range of redox-sensitive functional groups. An unprecedented concerted reductive elimination mechanism for benzoxazole formation is proposed on the basis of control experiments and DFT calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...