Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(1): 922-935, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34341933

RESUMO

Sulfate-reducing bacteria (SRB) can be used to remove metals from wastewater, sewage, and contaminated areas. However, metals can be toxic to this group of bacteria. Sediments from port areas present abundance of SRB and also metal contamination. Their microbial community has been exposed to metals and can be a good inoculum for isolation of metal-resistant SRB. The objective of the study was to analyze how metals influence activity and composition of sulfate-reducing bacteria. Enrichment cultures were prepared with a different metal (Zn, Cr, Cu, and Cd) range concentration tracking activity of SRB and 16S rRNA sequencing in order to access the community. The SRB activity decreased when there was an increase in the concentration of the metals tested. The highest concentration of metals precipitated were 0.2 mM of Cd, 5.4 mM of Zn, 4.5 mM of Cu, and 9.6 mM of Cr. The more toxic metals were Cd and Cu and had a greater community similarity with less SRB and more fermenters (e.g., Citrobacter and Clostridium). Meanwhile, the enrichments with less toxic metals (Cr and Zn) had more sequences affiliated to SRB genera (mainly Desulfovibrio). A new Desulfovibrio species was isolated. This type of study can be useful to understand the effects of metals in SRB communities and help to optimize wastewater treatment processes contaminated by metals. The new Desulfovibrio species may be important in future studies on bioremediation of neutral pH effluents contaminated by metals.


Assuntos
Desulfovibrio , Metais Pesados , Bactérias/genética , Brasil , RNA Ribossômico 16S/genética , Sulfatos
2.
Bioresour Technol ; 330: 124968, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33744733

RESUMO

The down flow structured bed bioreactor (DFSBR) was applied to treat synthetic acid mine drainage (AMD) to reduce sulfate, increase the pH and precipitate metals in solutions (Co, Cu, Fe, Mn, Ni and Zn) using vinasse as an electron donor for sulfate-reducing bacteria (SRB). DFSBR achieved sulfate removal efficiencies between 55 and 91%, removal of Co and Ni were obtained with efficiencies greater than 80%, while Fe, Zn, Cu and Mn were removed with average efficiencies of 70, 80, 73 and 60%, respectively. Sulfate reduction increased pH from moderately acidic to 6.7-7.5. Modelling data confirmed the experimental results and metal sulfide precipitation was the mainly responsible for metal removal. The main genera responsible for sulfate and metal reduction were Geobacter and Desulfovibrio while fermenters were Parabacteroides and Sulfurovum. Moreover, in syntrophism with SRB, they played an important role in the efficiency of metal and sulfate removal.


Assuntos
Microbiota , Saccharum , Reatores Biológicos , Elétrons , Concentração de Íons de Hidrogênio , Sulfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...