Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 465, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323254

RESUMO

Lipids, including the diterpenes cafestol and kahweol, are key compounds that contribute to the quality of coffee beverages. We determined total lipid content and cafestol and kahweol concentrations in green beans and genotyped 107 Coffea arabica accessions, including wild genotypes from the historical FAO collection from Ethiopia. A genome-wide association study was performed to identify genomic regions associated with lipid, cafestol and kahweol contents and cafestol/kahweol ratio. Using the diploid Coffea canephora genome as a reference, we identified 6,696 SNPs. Population structure analyses suggested the presence of two to three groups (K = 2 and K = 3) corresponding to the east and west sides of the Great Rift Valley and an additional group formed by wild accessions collected in western forests. We identified 5 SNPs associated with lipid content, 4 with cafestol, 3 with kahweol and 9 with cafestol/kahweol ratio. Most of these SNPs are located inside or near candidate genes related to metabolic pathways of these chemical compounds in coffee beans. In addition, three trait-associated SNPs showed evidence of directional selection among cultivated and wild coffee accessions. Our results also confirm a great allelic richness in wild accessions from Ethiopia, especially in accessions originating from forests in the west side of the Great Rift Valley.


Assuntos
Coffea/química , Diterpenos/análise , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Vias Biossintéticas , Coffea/genética , Diterpenos/metabolismo , Lipídeos/análise , Lipídeos/biossíntese , Proteínas de Plantas/genética , Locos de Características Quantitativas , Análise de Sequência de DNA/métodos
2.
Theor Appl Genet ; 117(1): 57-63, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18392802

RESUMO

Asian soybean rust (ASR) is caused by the fungal pathogen Phakopsora pachyrhizi Sydow & Sydow. It was first identified in Brazil in 2001 and quickly infected soybean areas in several countries in South America. Primary efforts to combat this disease must involve the development of resistant cultivars. Four distinct genes that confer resistance against ASR have been reported: Rpp1, Rpp2, Rpp3, and Rpp4. However, no cultivar carrying any of those resistance loci has been released. The main objective of this study was to genetically map Rpp2 and Rpp4 resistance genes. Two F(2:3) populations, derived from the crosses between the resistant lines PI 230970 (Rpp2), PI 459025 (Rpp4) and the susceptible cultivar BRS 184, were used in this study. The mapping populations and parental lines were inoculated with a field isolate of P. pachyrhizi and evaluated for lesion type as resistant (RB lesions) or susceptible (TAN lesions). The mapping populations were screened with SSR markers, using the bulk segregant analysis (BSA) to expedite the identification of linked markers. Both resistance genes showed an expected segregation ratio for a dominant trait. This study allowed mapping Rpp2 and Rpp4 loci on the linkage groups J and G, respectively. The associated markers will be of great value on marker assisted selection for this trait.


Assuntos
Basidiomycota , Mapeamento Cromossômico , DNA de Plantas/genética , Genes de Plantas , Glycine max/genética , Doenças das Plantas/genética , Cruzamentos Genéticos , Ligação Genética , Marcadores Genéticos , Repetições Minissatélites , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Glycine max/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...