Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 17(11): e0011725, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37948458

RESUMO

Chagas disease is caused by the protozoan parasite, Trypanosoma cruzi. This parasite alternates between an insect vector and a mammalian host. T. cruzi epimastigotes reside in the insect vector and coexist with the blood components of the vertebrate host. The metabolic profile of T. cruzi has been extensively studied; however, changes in its metabolism in response to signaling molecules present in the vector are poorly understood. Heme acts as a physiological oxidant that triggers intense epimastigote proliferation and upregulates the expression of genes related to glycolysis and aerobic fermentation in vitro. Here, heme-cultured epimastigotes increased D-glucose consumption. In fact, heme-cultured parasites secreted more succinate (the end product of the so-called succinic fermentation) followed by glucose intake. Increased succinate levels reduced the extracellular pH, leading to acidification of the supernatant. However, the acidification and proliferation stimulated by heme was impaired when glycolysis was inhibited. Otherwise, when glucose amount is enhanced in supernatant, heme-cultured parasites increased its growth whereas the glucose depletion caused a delay in proliferation. Heme supplementation increased epimastigote electron transport system-related O2 consumption rates, while glucose addition reduced both the electron transport system-related O2 consumption rates and spare respiratory capacity, indicating a Crabtree-like effect. These results show that glycolysis predominated in heme-cultured epimastigotes over oxidative phosphorylation for energy supply when glucose is present to sustain its high proliferation in vitro. Furthermore, it provided an insight into the parasite biology in the vector environment that supply glucose and the digestion of blood generates free heme that can lead to the growth of T. cruzi epimastigotes.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Humanos , Trypanosoma cruzi/genética , Heme/metabolismo , Glucose/metabolismo , Succinatos/metabolismo , Succinatos/farmacologia , Mamíferos
2.
Front Microbiol ; 12: 617504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935988

RESUMO

Chagas disease, which is caused by Trypanosoma cruzi, establishes lifelong infections in humans and other mammals that lead to severe cardiac and gastrointestinal complications despite the competent immune response of the hosts. Furthermore, it is a neglected disease that affects 8 million people worldwide. The scenario is even more frustrating since the main chemotherapy is based on benznidazole, a drug that presents severe side effects and low efficacy in the chronic phase of the disease. Thus, the search for new therapeutic alternatives is urgent. In the present study, we investigated the activity of a novel phenyl-tert-butyl-nitrone (PBN) derivate, LQB303, against T. cruzi. LQB303 presented trypanocidal effect against intracellular [IC50/48 h = 2.6 µM] and extracellular amastigotes [IC50/24 h = 3.3 µM] in vitro, leading to parasite lysis; however, it does not present any toxicity to host cells. Despite emerging evidence that mitochondrial metabolism is essential for amastigotes to grow inside mammalian cells, the mechanism of redox-active molecules that target T. cruzi mitochondrion is still poorly explored. Therefore, we investigated if LQB303 trypanocidal activity was related to the impairment of the mitochondrial function of amastigotes. The investigation showed there was a significant decrease compared to the baseline oxygen consumption rate (OCR) of LQB303-treated extracellular amastigotes of T. cruzi, as well as reduction of "proton leak" (the depletion of proton motive force by the inhibition of F1Fo ATP synthase) and "ETS" (maximal oxygen consumption after uncoupling) oxygen consumption rates. Interestingly, the residual respiration ("ROX") enhanced about three times in LQB303-treated amastigotes. The spare respiratory capacity ratio (SRC: cell ability to meet new energy demands) and the ATP-linked OCR were also impaired by LQB303 treatment, correlating the trypanocidal activity of LQB303 with the impairment of mitochondrial redox metabolism of amastigotes. Flow cytometric analysis demonstrated a significant reduction of the ΔΨm of treated amastigotes. LQB303 had no significant influence on the OCR of treated mammalian cells, evidencing its specificity against T. cruzi mitochondrial metabolism. Our results suggest a promising trypanocidal activity of LQB303, associated with parasite bioenergetic inefficiency, with no influence on the host energy metabolism, a fact that may point to an attractive alternative therapy for Chagas disease.

3.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165951, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32861766

RESUMO

Trypanosoma cruzi has a complex life cycle involving four life stages: the replicative epimastigotes and metacyclic trypomastigotes in the invertebrate host digestive tract, and intracellular amastigotes and bloodstream trypomastigotes in the mammalian host. Trypomastigotes can invade any nucleated cell, including macrophages, which produce ROS that enhance intracellular infection. However, how ROS modulate T. cruzi infection in the mammalian cell remains unclear. Therefore, the present work aimed to investigate the role of ROS during the stimulation of amastigogenesis in vitro. Our results showed that H2O2 improves the differentiation process in vitro and that it was impaired by Peg-Catalase. However, the antioxidants GSH and NAC had no influence on induced amastigogenesis, which suggests the specificity of H2O2 to increase intracellular differentiation. Amastigogenesis physiologically occurs in low pH, thus we investigated whether parasites are able to produce ROS during amastigogenesis. Interestingly, after 60 min of differentiation induction in vitro, we observed an increase in H2O2 production, which was inhibited by the mitochondrial-targeted antioxidant, mitoTEMPO and Cyclosporine A (a mitochondrial permeability transition pore -mPTP- inhibitor), suggesting mitochondrion as a H2O2 source. Indeed, quantitative real time (qPCR) showed an increase of the mitochondrial superoxide dismutase (FeSODA) gene expression after 60 min of induced amastigogenesis, reinforcing the hypothesis of mitochondrial ROS induction during intracellular differentiation of T. cruzi. The reduction of cellular respiration and the decreased ΔΨm observed during amastigogenesis can explain the increased mitochondrial ROS through mPTP opening. In conclusion, our results suggest that H2O2 is involved in the amastigogenesis of T. cruzi.


Assuntos
Peróxido de Hidrogênio/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Chlorocebus aethiops , Concentração de Íons de Hidrogênio , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trypanosoma cruzi/citologia , Células Vero
4.
Biomed Res Int ; 2017: 2483652, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28316976

RESUMO

The therapeutic options for Chagas disease are limited and its treatment presents a number of drawbacks including toxicity, drug resistance, and insufficient effectiveness against the chronic stage of the disease. Therefore, new therapeutical options are mandatory. In the present work, we evaluated the effect of a phenyl-tert-butylnitrone (PBN) derivate, LQB 123, against Trypanosoma cruzi forms. LQB 123 presented a trypanocidal effect against bloodstream trypomastigotes (IC50 = 259.4 ± 6.1 µM) and intracellular amastigotes infecting peritoneal macrophages (IC50 = 188.2 ± 47.5 µM), with no harmful effects upon the mammalian cells (CC50 values greater than 4 mM), resulting in a high selectivity index (CC50/IC50 > 20). Additionally, metacyclic trypomastigotes submitted to LQB 123 presented an IC50 of about 191.8 ± 10.5 µM and epimastigotes forms incubated with different concentrations of LQB 123 presented an inhibition of parasite growth with an IC50 of 255.1 ± 3.6 µM. Finally, we investigated the mutagenic potential of the nitrone by the Salmonella/microsome assay and observed no induction of mutagenicity even in concentrations as high as 33000 µM. Taken together, these results present a nonmutagenic compound, with trypanocidal activity against all relevant forms of T. cruzi, offering new insights into CD treatment suggesting additional in vivo tests.


Assuntos
Doença de Chagas/tratamento farmacológico , Óxidos N-Cíclicos/química , Mutagênicos/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Avaliação Pré-Clínica de Medicamentos , Concentração Inibidora 50 , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Camundongos , Mutagênese , Óxidos de Nitrogênio/química , Salmonella , Tripanossomicidas/química
5.
J Inflamm (Lond) ; 11: 11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24826081

RESUMO

BACKGROUND: Sepsis is a prevalent condition in critically ill patients and may be associated with thiamine deficiency (TD). The aim of this study was to evaluate the effect of TD on inflammation, oxidative stress and cellular recruitment in a sepsis model. METHODS: The experimental sepsis model, cecal ligation and puncture (CLP), was utilized on mice in comparison with a sham procedure. The following four groups were compared against each other: SHAM with AIN93G complete chow, SHAM with thiamine deficient (TD) chow, CLP with AIN93G complete chow, and CLP with TD chow. Thiamine pyrophosphate (TPP) blood concentrations were determined, and blood and peritoneal fluid were evaluated for differences in TNF-alpha, IL-1, IL-6, KC and MCP-1/CCL2 levels. In addition, the levels of 4-HNE adducts in liver proteins were evaluated by Western Blot. RESULTS: The mean TPP blood concentration from the mice fed with the complete chow was 303.3 ± 42.6 nmol/L, and TD occurred within 10 days. TNF-α and MCP-1 concentrations in the peritoneal fluid were significantly greater in the CLP with TD chow group when compared with the other groups. The blood IL-1ß level, however, was lower in the CLP with TD chow group. Liver 4-HNE levels were highest in the TD chow groups. Blood mononuclear cell numbers, as well as peritoneal total leukocyte, mononuclear cell and neutrophil numbers were greater in the CLP with TD chow group. Peritoneal bacterial colony forming units (CFU) were significantly lower in the CLP with TD chow group. CONCLUSION: TD was associated with greater bacterial clearance, oxidative stress and inflammatory response changes.

6.
Acta Trop ; 128(1): 27-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23770204

RESUMO

It has been reported that serine peptidase activities of Trypanosoma cruzi play crucial roles in parasite dissemination and host cell invasion and therefore their inhibition could affect the progress of Chagas disease. The present study investigates the interference of the Stichodactyla helianthus Kunitz-type serine protease inhibitor (ShPI-I), a 55-amino acid peptide, in T. cruzi serine peptidase activities, parasite viability, and parasite morphology. The effect of this peptide was also studied in Leishmania amazonensis promastigotes and it was proved to be a powerful inhibitor of serine proteases activities and the parasite viability. The ultrastructural alterations caused by ShPI-I included vesiculation of the flagellar pocket membrane and the appearance of a cytoplasmic vesicle that resembles an autophagic vacuole. ShPI-I, which showed itself to be an important T. cruzi serine peptidase inhibitor, reduced the parasite viability, in a dose and time dependent manner. The maximum effect of peptide on T. cruzi viability was observed when ShPI-I at 1×10(-5)M was incubated for 24 and 48h which killed completely both metacyclic trypomastigote and epimastigote forms. At 1×10(-6)M ShPI-I, in the same periods of time, reduced parasite viability about 91-95% respectively. Ultrastructural analysis demonstrated the formation of concentric membranar structures especially in the cytosol, involving organelles and small vesicles. Profiles of endoplasmic reticulum were also detected, surrounding cytosolic vesicles that resembled autophagic vacuoles. These results suggest that serine peptidases are important in T. cruzi physiology since the inhibition of their activity killed parasites in vitro as well as inducing important morphological alterations. Protease inhibitors thus appear to have a potential role as anti-trypanosomatidal agents.


Assuntos
Antiprotozoários/farmacologia , Produtos Biológicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Anêmonas-do-Mar/química , Serpinas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiprotozoários/isolamento & purificação , Organismos Aquáticos/química , Produtos Biológicos/isolamento & purificação , Doença de Chagas/parasitologia , Relação Dose-Resposta a Droga , Humanos , Leishmania/citologia , Leishmania/efeitos dos fármacos , Leishmania/fisiologia , Microscopia Eletrônica , Organelas/ultraestrutura , Serpinas/isolamento & purificação , Trypanosoma cruzi/citologia , Trypanosoma cruzi/fisiologia
7.
Rio de Janeiro; s.n; 2012. 132 f p.
Tese em Português | LILACS | ID: lil-756709

RESUMO

As formas epimastigotas de Trypanosoma cruzi proliferam e se diferenciam no interior de diferentes compartimentos do trato digestivo dos triatomíneos. Esses ambientes antagônicos, no que diz respeito à concentração de nutrientes, pH e status redox, constituem um desafio para o protozoário por conterem moléculas e fatores capazes de deflagrar diferentes sinalizações e respostas no parasito. Por isso, testamos a influência de produtos abundantes do metabolismo do vetor e de status redox distintos, frente aos processos de proliferação e diferenciação in vivo e in vitro. Como exemplo temos o heme e a hemozoína, subprodutos da digestão da hemoglobina, e o urato, rico na urina dos insetos. O heme é uma importante molécula em todos os seres vivos. Nosso grupo mostrou seu papel na proliferação in vitro de T. cruzi e que esse sinal é governado pela enzima redox-sensível CaMKII (Lara et al., 2007; Souza et al., 2009). Esse efeito parece depender de uma sinalização redox, onde o heme e não seus análigos induz a formação de EROs, modulando a atividade da CaMKII (Nogueira et al, 2011). Apesar de gerar espécies reativas de oxigênio (EROs) em formas epimastigotas, o heme não alterou a ultraestrutura desses parasitos mostrando uma adaptação a ambientes oxidantes. Além disso, a adição de FCCP inibiu a formação de EROs mitocondrial, diminuindo a proliferação dos parasitos. Em contrapartida, a AA aumentou drasticamente a produção de EROs mitocondrial levando à morte dos epimastigotas. Estes resultados confirmam a hipótese de regulação redox do crescimento de epimastigotas...


Trypanosoma cruzi epimastigotes proliferate and differentiate inside different compartments of the triatomines gut. These environments are antagonic in terms of nutrient content, pH and redox status. All these factors represent a challenge to the protozoan due to the presence of molecules and factors which are able to induce different signals to the parasite. Thus, we tested the influence of abundant metabolism products of the vector, with distinct redox status, in the proliferation and metacyclogenesis in vitro and in vivo. These molecules are heme and hemozoin, both byproducts of hemoglobin digestion, and urate, present in the urine of insects. Heme is a ubiquitous molecule present in all living organisms. Our group studied its role in T. cruzi growth in vitro, showing that this signal is governed by the redox-sensitive enzyme CaMKII (Lara et al., 2007; Souza et al., 2009). Indeed, it seems to rely on a redox signaling pathway in which heme, but not its analogs, induces ROS formation, thus modulating CaMKII activity (Nogueira et al., 2011). Although it induces ROS in epimastigotes, the heme molecule had no deleterious effect upon the parasites ultrastructure, suggesting an adaptation to oxidative environments. In addition, FCCP inhibited mitochondrial ROS formation, then decreasing the parasite proliferation. On the other hand, AA drastically increased mitochondrial ROS production leading to cell death. These results corroborate the hypothesis of redox regulation of epimastigotes proliferation. Hemozoin (β- hematin) formation is an elegant strategy to minimize the toxic effect of heme in hematophagous insects. However, β-hematin had no influence upon the proliferation or metacyclogenesis in vitro. Also, urate, GSH and NAC impaired epimastigote proliferation. These effects were partially reversed when the antioxidants were incubated along with heme...


Assuntos
Humanos , Doença de Chagas/metabolismo , Oxirredução , Trypanosoma cruzi/crescimento & desenvolvimento , Doença de Chagas/genética , Técnicas In Vitro , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real , Trypanosoma cruzi , Trypanosoma cruzi/genética
8.
J Parasitol Res ; 2011: 174614, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22007287

RESUMO

Trypanosoma cruzi, the protozoan responsible for Chagas disease, has a complex life cycle comprehending two distinct hosts and a series of morphological and functional transformations. Hemoglobin degradation inside the insect vector releases high amounts of heme, and this molecule is known to exert a number of physiological functions. Moreover, the absence of its complete biosynthetic pathway in T. cruzi indicates heme as an essential molecule for this trypanosomatid survival. Within the hosts, T. cruzi has to cope with sudden environmental changes especially in the redox status and heme is able to increase the basal production of reactive oxygen species (ROS) which can be also produced as byproducts of the parasite aerobic metabolism. In this regard, ROS sensing is likely to be an important mechanism for the adaptation and interaction of these organisms with their hosts. In this paper we discuss the main features of heme and ROS susceptibility in T. cruzi biology.

9.
PLoS One ; 6(10): e25935, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22022475

RESUMO

Heme is a ubiquitous molecule that has a number of physiological roles. The toxic effects of this molecule have been demonstrated in various models, based on both its pro-oxidant nature and through a detergent mechanism. It is estimated that about 10 mM of heme is released during blood digestion in the blood-sucking bug's midgut. The parasite Trypanosoma cruzi, the agent of Chagas' disease, proliferates in the midgut of the insect vector; however, heme metabolism in trypanosomatids remains to be elucidated. Here we provide a mechanistic explanation for the proliferative effects of heme on trypanosomatids. Heme, but not other porphyrins, induced T. cruzi proliferation, and this phenomenon was accompanied by a marked increase in reactive oxygen species (ROS) formation in epimastigotes when monitored by ROS-sensitive fluorescent probes. Heme-induced ROS production was time- and concentration-dependent. In addition, lipid peroxidation and the formation of 4-hydroxy-2-nonenal (4-HNE) adducts with parasite proteins were increased in epimastigotes in the presence of heme. Conversely, the antioxidants urate and GSH reversed the heme-induced ROS. Urate also decreased parasite proliferation. Among several protein kinase inhibitors tested only specific inhibitors of CaMKII, KN93 and Myr-AIP, were able to abolish heme-induced ROS formation in epimastigotes leading to parasite growth impairment. Taken together, these data provide new insight into T. cruzi- insect vector interactions: heme, a molecule from the blood digestion, triggers epimastigote proliferation through a redox-sensitive signalling mechanism.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Heme/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Espécies Reativas de Oxigênio/farmacologia , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/crescimento & desenvolvimento , Animais , Antioxidantes/farmacologia , Ativação Enzimática/efeitos dos fármacos , Heme/química , Cinética , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...