Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 52(10): 7416-22, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21896852

RESUMO

PURPOSE: Retinal melatonin synthesis occurs in the photoreceptor layer in a circadian manner, controlling several physiologic rhythmic phenomena, besides being the most powerful natural free radical scavenger. The purpose of the present work was to evaluate the diurnal profile of retinal melatonin content and the regulation of its synthesis in the retina of streptozotocin-induced diabetic rats. METHODS: Diabetes was induced in male Wistar rats (12 hour-12 hour light/dark cycle) with streptozotocin. Control, diabetic, and insulin-treated diabetic animals were killed every 3 hours throughout the light-dark cycle. Retinal melatonin content was measured by high-performance liquid chromatography, arylalkylamine N-acetyltransferase (AANAT) activity was analyzed by radiometric assay, Bmal1 gene expression was determined by qPCR, and cyclic adenosine monophosphate (cAMP) content was assessed by ELISA. RESULTS: Control animals showed a clear retinal melatonin and AANAT activity daily rhythm, with high levels in the dark. Diabetic rats had both parameters reduced, and the impairment was prevented by immediate insulin treatment. In addition, the Bmal1 expression profile was lost in the diabetic group, and the retinal cAMP level was reduced 6 hours after lights on and 3 hours after lights off. CONCLUSIONS: The present work shows a melatonin synthesis reduction in diabetic rats retinas associated with a reduction in AANAT activity that was prevented by insulin treatment. The Bmal1-flattened gene expression and the cAMP reduction seem to be responsible for the AANAT activity decrease in diabetic animals. The melatonin synthesis reduction observed in the pineal gland of diabetic rats is also observed in a local melatonin tissue synthesizer, the retina.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Melatonina/biossíntese , Retina/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Arilalquilamina N-Acetiltransferase/metabolismo , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Ritmo Circadiano/fisiologia , AMP Cíclico/metabolismo , Fragmentação do DNA , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Masculino , Glândula Pineal/cirurgia , Reação em Cadeia da Polimerase , Radiometria , Ratos , Ratos Wistar
2.
Investigative Ophthalmology & Visual Science ; 52(10): 7416-7422, 22 sept.2011.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1063621

RESUMO

Retinal melatonin synthesis occurs in the photoreceptor layer in a circadian manner, controlling several physiologic rhythmic phenomena, besides being the most powerful natural free radical scavenger. The purpose of the present work was to evaluate the diurnal profile of retinal melatonin content and the regulation of its synthesis in the retina of streptozotocin-induced diabetic rats.Diabetes was induced in male Wistar rats (12 hour-12 hour light/dark cycle) with streptozotocin. Control, diabetic, and insulin-treated diabetic animals were killed every 3 hours throughout the light-dark cycle. Retinal melatonin content was measured by high-performance liquid chromatography, arylalkylamine N-acetyltransferase (AANAT) activity was analyzed by radiometric assay, Bmal1 gene expression was determined by qPCR, and cyclic adenosine monophosphate (cAMP) content was assessed by ELISA.Control animals showed a clear retinal melatonin and AANAT activity daily rhythm, with high levels in the dark. Diabetic rats had both parameters reduced, and the impairment was prevented by immediate insulin treatment. In addition, the Bmal1 expression profile was lost in the diabetic group, and the retinal cAMP level was reduced 6 hours after lights on and 3 hours after lights off.The present work shows a melatonin synthesis reduction in diabetic rats retinas associated with a reduction in AANAT activity that was prevented by insulin treatment. The Bmal1-flattened gene expression and the cAMP reduction seem to be responsible for the AANAT activity decrease in diabetic animals. The melatonin synthesis reduction observed in the pineal gland of diabetic rats is also observed in a local melatonin tissue synthesizer, the retina.


Assuntos
Ratos , Células Fotorreceptoras , Estreptozocina/metabolismo , Melatonina/análise , Receptores de Melatonina/administração & dosagem , Diabetes Mellitus Experimental/induzido quimicamente , Insulina/uso terapêutico
3.
J Endocrinol ; 206(2): 183-93, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20488947

RESUMO

Unfolded protein response (UPR)-mediated pancreatic beta-cell death has been described as a common mechanism by which palmitate (PA) and pro-inflammatory cytokines contribute to the development of diabetes. There are evidences that interleukin 6 (IL6) has a protective action against beta-cell death induced by pro-inflammatory cytokines; the effects of IL6 on PA-induced apoptosis have not been investigated yet. In the present study, we have demonstrated that PA selectively disrupts IL6-induced RAC-alpha serine/threonine-protein kinase (AKT) activation without interfering with signal transducer and activator of transcription 3 phosphorylation in RINm5F cells. The inability of IL6 to activate AKT in the presence of PA correlated with an inefficient protection against PA-induced apoptosis. In contrast to PA, IL6 efficiently reduced apoptosis induced by pro-inflammatory cytokines. In addition, we have demonstrated that IL6 is unable to overcome PA-stimulated UPR, as assessed by activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) expression, X-box binding protein-1 gene mRNA splicing, and pancreatic eukaryotic initiation factor-2 alpha kinase phosphorylation, whereas no significant induction of UPR by pro-inflammatory cytokines was detected. This unconditional stimulation of UPR and apoptosis by PA was accompanied by the stimulation of CHOP and tribble3 (TRIB3) expression, irrespective of the presence of IL6. These findings suggest that IL6 is unable to protect pancreatic beta-cells from PA-induced apoptosis because it does not repress UPR activation. In this way, CHOP and ATF4 might mediate PA-induced TRIB3 expression and, by extension, the suppression of IL6 activation of pro-survival kinase AKT.


Assuntos
Apoptose , Insulinoma/metabolismo , Interleucina-6/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resposta a Proteínas não Dobradas , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fragmentação do DNA , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , História do Século XVI , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Palmitatos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...