Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Proc Natl Acad Sci U S A ; 98(6): 3109-14, 2001 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-11248040

RESUMO

Arc repressor forms a homodimer in which the subunits intertwine to create a single globular domain. To obtain Arc sequences that fold preferentially as heterodimers, variants with surface patches of excess positive or negative charge were designed. Several but not all oppositely charged sequence pairs showed preferential heterodimer formation. In the most successful design pair, alpha helix B of one subunit contained glutamic acids at positions 43, 46, 47, 48, and 50, whereas the other subunit contained lysines or arginines at these positions. A continuum electrostatic model captures many features of the experimental results and suggests that the most successful designs include elements of both positive and negative design.


Assuntos
Proteínas Repressoras/química , Proteínas Virais/química , Cristalografia por Raios X , Dimerização , Variação Genética , Modelos Moleculares , Mutagênese , Ressonância Magnética Nuclear Biomolecular/métodos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Eletricidade Estática , Proteínas Virais/genética , Proteínas Virais Reguladoras e Acessórias
3.
Nature ; 402(6764): 894-8, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10622255

RESUMO

Receiver domains are the dominant molecular switches in bacterial signalling. Although several structures of non-phosphorylated receiver domains have been reported, a detailed structural understanding of the activation arising from phosphorylation has been impeded by the very short half-lives of the aspartylphosphate linkages. Here we present the first structure of a receiver domain in its active state, the phosphorylated receiver domain of the bacterial enhancer-binding protein NtrC (nitrogen regulatory protein C). Nuclear magnetic resonance spectra were taken during steady-state autophosphorylation/dephosphorylation, and three-dimensional spectra from multiple samples were combined. Phosphorylation induces a large conformational change involving a displacement of beta-strands 4 and 5 and alpha-helices 3 and 4 away from the active site, a register shift and an axial rotation in helix 4. This creates an exposed hydrophobic surface that is likely to transmit the signal to the transcriptional activation domain.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Transdução de Sinais , Transativadores , Fatores de Transcrição/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Proteínas PII Reguladoras de Nitrogênio , Fosforilação , Conformação Proteica , Fatores de Transcrição/metabolismo
4.
Biochemistry ; 34(4): 1413-24, 1995 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-7827089

RESUMO

NTRC is a transcriptional enhancer binding protein whose N-terminal domain is a member of the family of receiver domains of two-component regulatory systems. Using 3D and 4D NMR spectroscopy, we have completed the 1H, 15N, and 13C assignments and determined the solution structure of the N-terminal receiver domain of the NTRC protein. Determination of the three-dimensional structure was carried out with the program X-PLOR (Brünger, 1992) using a total of 915 NMR-derived distance and dihedral angle restraints. The resultant family of structures has an average root mean square deviation of 0.81 A from the average structure for the backbone atoms involved in well-defined secondary structure. The structure is comprised of five alpha-helices and a five-stranded parallel beta-sheet, in a (beta/alpha)5 topology. Comparison of the solution structure of the NTRC receiver domain with the crystal structures of the homologous protein CheY in both the Mg(2+)-free and Mg(2+)-bound forms [Stock, A.M., Mottonen, J. M., Stock, J. B., & Schutt, C. E. (1989) Nature 337, 745-749; Volz, K., & Matsumura, P. (1991) J. Biol. Chem. 296, 15511-15519; Stock, A. M., Martinez-Hackert, E., Rasmussen, B. F., West, A. H., Stock, J. B., Ringe, D., & Petsko, G. A. (1993) Biochemistry 32, 13375-13380; Bellsolell, L., Prieto, J., Serrano, L., & Coll, M. (1994) J. Mol. Biol. 238, 489-495] reveals a very similar fold, with the only significant difference occurring in the positioning of helix 4 relative to the rest of the protein. Examination of the conformation of consensus residues of the receiver domain superfamily [Volz, K. (1993) Biochemistry 32, 11741-11753] in the structures of the NTRC receiver domain and CheY establishes the structural importance of residues whose side chains are involved in hydrogen bonding or hydrophobic core interactions. The importance of some nonconsensus residues which may be conserved for their ability to fulfill helix capping roles is also discussed.


Assuntos
Proteínas de Ligação a DNA/ultraestrutura , Transativadores , Sequência de Aminoácidos , Proteínas de Bactérias/ultraestrutura , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas PII Reguladoras de Nitrogênio , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes , Transdução de Sinais , Soluções , Fatores de Transcrição/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...